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Preface

This volume contains the proceedings of SARA2000, the fourth Symposium on
Abstraction, Reformulations, and Approximation (SARA). The conference was
held at Horseshoe Bay Resort and Conference Club, Lake LBJ, Texas, July 26–
29, 2000, just prior to the AAAI 2000 conference in Austin. Previous SARA
conferences took place at Jackson Hole in Wyoming (1994), Ville d’Estérel in
Québec (1995), and Asilomar in California (1998). The symposium grew out
of a series of workshops on abstraction, approximation, and reformulation that
had taken place alongside AAAI since 1989. This year’s symposium was actually
scheduled to take place at Lago Vista Clubs & Resort on Lake Travis but, due
to the resort’s failure to pay taxes, the conference had to be moved late in the
day. This mischance engendered eleventh-hour reformulations, abstractions, and
resource re-allocations of its own. Such are the perils of organizing a conference.
This is the first SARA for which the proceedings have been published in the
LNAI series of Springer-Verlag. We hope that this is a reflection of the increased
maturity of the field and that the increased visibility brought by the publication
of this volume will help the discipline grow even further.

Abstractions, reformulations, and approximations (AR&A) have found ap-
plications in a variety of disciplines and problems including automatic program-
ming, constraint satisfaction, design, diagnosis, machine learning, planning, qual-
itative reasoning, scheduling, resource allocation, and theorem proving. The pa-
pers in this volume capture a cross-section of these application domains. One of
the primary uses of AR&A has been to overcome computational intractability.
AR&A techniques, however, have also proved useful for knowledge acquisition,
explanation, and other applications, as papers in this volume also illustrate.

The aim of SARA is to provide a forum for intensive and friendly interac-
tion among researchers in all areas of AI in which an interest in the different
aspects of AR&A may exist. The diverse backgrounds of participants at this and
previous meetings have lead to a rich and lively exchange of ideas, allowed the
comparison of goals, techniques, and paradigms, and helped identify important
research issues and engineering hurdles. SARA has always invited distinguished
members of the research community to present keynote talks. SARA2000 was
no exception to this rule with invited talks from Professor Thomas G. Dietterich
(AAAI Fellow) of Oregon State University, Professor Patrick Cousot of the École
Normale Supérieure, Paris, and Professor Richard E. Korf (AAAI Fellow) of the
University of California, Los Angeles.

We would like to thank the authors of all the submitted papers, extended
abstracts, posters, and research summaries, the referees, the invited speakers,
and the program committee for all their time and effort. We also thank the
members of the steering committee for their faith in our ability to put together
this symposium, and for their advice along the way. Finally, we would like to
thank our sponsors: the American Association of Artificial Intelligence, and, at
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the University of Nebraska-Lincoln, the Office of Vice Chancellor for Research,
the Center for Communication and Information Science (CCIS), the College of
Arts and Sciences, the Department of Computer Science and Engineering (CSE),
and the J.D. Edwards Honors Program in Computer Science and Management.
SARA2000 is an AAAI Affiliate. Indeed, it is the first such affiliate.

July 2000 Berthe Y. Choueiry
Toby Walsh

Co-chairs of SARA2000



Organization

Symposium Co-chairs

Berthe Y. Choueiry, University of Nebraska-Lincoln
Toby Walsh, University of York

Program Committee

Ralph Bergmann, University of Kaiserlautern
Karl Branting, University of Wyoming
Marco Cadoli, Università di Roma, La Sapienza
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Djamila Sam-Haroud, Swiss Federal Institute of Technology in Lausanne
Abdul Sattar, Griffith University
Thomas Schiex, INRA Toulouse
Stephen D. Scott, University of Nebraska-Lincoln
Peter Struss, Technical University of Munich
Marco Valtorta, University of South Carolina at Columbia

Sponsoring Institutions

The American Association of Artificial Intelligence (AAAI).
The Office of Vice Chancellor for Research, University of Nebraska-Lincoln.
The Center for Communication and Information Science (CCIS), University of
Nebraska-Lincoln.
The College of Arts and Sciences, University of Nebraska-Lincoln.
The Department of Computer Science and Engineering (CSE), University of
Nebraska-Lincoln.
The J.D. Edwards Honors Program in Computer Science and Management, Uni-
versity of Nebraska-Lincoln.



Table of Contents

Invited Talks

Partial Completeness of Abstract Fixpoint Checking . . . . . . . . . . . . . . . . . . . . 1
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Answering Queries with Database Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . 328
Chen Li (Stanford University)

Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Gordon S. Novak Jr. (University of Texas at Austin)

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



Partial Completeness

of Abstract Fixpoint Checking

(Invited Paper)

Patrick Cousot

Département d’informatique, École normale supérieure
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr,
http://www.ens.fr/∼cousot/

Abstract. Abstract interpretation is used in program static analysis
and model checking to cope with infinite state spaces and/or with com-
puter resource limitations. One common problem is to check abstract
fixpoints for specifications. The abstraction is partially complete when
the checking algorithm is exact in that, if the algorithm ever terminates,
its answer is always affirmative for correct specifications. We character-
ize partially complete abstractions for various abstract fixpoint checking
algorithms, including new ones, and show that the computation of com-
plete abstract domains is essentially equivalent to invariance proofs that
is to concrete fixpoint checking.

1 Introduction

In computer assisted program formal verification, program static analysis and
model-checking, one must design algorithms to check fixpoints lfp

≤
λX · I ∨

F (X) ≤ S 1,2. For theoretical undecidability reasons or because of practical
computer resource limitations, one must often resort to abstract interpretation
[6, 10, 12] and check instead γ

(
lfp

�
λX ·α(I ∨ F (γ(X)))

)
≤ S. Soundness re-

quires that a positive abstract answer implies a positive concrete answer. So no
error is possible when reasoning in the abstract. Completeness requires that a
positive concrete answer can always be found in the abstract. Since termination
is a separate problem in the abstract (which can be solved by other means such
as a coarser abstraction and/or widenings/narrowings), we consider partial com-
pleteness 3 requiring that in case of termination of the abstract fixpoint checking
algorithms, no positive answer can be missed. The problem that we study in this
paper is “to constructively characterize the abstractions 〈α,γ〉 for which abstract

1 The ≤-least fixpoint lfp
≤

ϕ is the ≤-least fixpoint of ϕ, if it exists, which is the case
e.g. by Knaster-Tarski fixpoint theorem [34].

2 We use Church’s �-notation such that if ϕ
∆
= �x � e if the value of ϕ(y) is that of e

where the value of x is y.
3 The phrasing recalls that of partial correctness after [21].

B.Y. Choueiry and T. Walsh (Eds.): SARA2000, LNAI 1864, pp. 1–25, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



2 Patrick Cousot

fixpoint algorithms are partially complete”. This highlights the problems related
to the generalization of model-checking to infinite (or very large) state systems
and the approximation ideas which are recurrent in static program analysis by
abstract interpretation.

2 Concrete Fixpoint Checking

2.1 The Concrete Fixpoint Checking Problem

Program static analysis, as formalized by abstract interpretation [6, 10], consists
in automatically determining program properties by a fixpoint computation and
then in checking that the computed program properties imply a specification
given by the programming language semantics. Universal model-checking [3, 32]
consists in checking that a model of a system satisfies a specification given by
some temporal logic formula.

From a mathematical point of view, the principle is, in both cases, that we
are given a complete lattice 〈L, ≤, 0, 1, ∨, ∧〉 of properties and a transformer
F ∈ L

mon�−→ L which is a ≤-monotonic mapping from L to L. One must check
that lfp

≤
λX · I ∨ F (X) ≤ S where 〈I, S〉 ∈ L2 is the given specification 4.

Example 1. It is quite frequent in abstract interpretation [6, 12], to specify the
program semantics by a transition system 〈Σ, τ, I〉 where Σ is a set of states,
τ ⊆ Σ × Σ is the transition relation and I ⊆ Σ is the set of initial states. The
collecting semantics is the set post [τ�](I) = lfp

≤
λX · I ∨ post [τ ](X) of states

which are reachable from the initial states in I (where post [τ ](X) ∆= {s′ | ∃s ∈
X : 〈s, s′〉 ∈ τ} is the right-image of X ⊆ Σ by relation τ and τ� is the
reflexive transitive closure of τ). Let S ⊆ Σ be a safety specification (typically
the specification of absence of run-time errors). The safety specification S is
satisfied if and only if post [τ�](I) ⊆ S that is lfp

≤
λX · I ∨ F (X) ≤ S where

F = post [τ ] and 〈L,≤, 0, 1, ∨, ∧〉 is 〈℘(Σ),⊆, ∅, Σ, ∪, ∩〉. ��

2.2 The Concrete Fixpoint Checking Algorithm

The hypotheses for the Knaster-Kleene-Tarski fixpoint theorem [11, 34] are:

Hypotheses 1 1. 〈L,≤, 0, 1, ∨, ∧〉 is a complete lattice;
2. F ∈ L

mon�−→ L is ≤-monotonic.

This theorem leads to the following iterative Alg. 1 to check that lfp
≤
λX · I ∨

F (X) ≤ S. This Alg. 1 is classical in abstract interpretation [10] and apparently
more recent in model-checking [16, 26] 5:

4 The ≤-least fixpoint lfp
≤

ϕ of ϕ exists by Knaster-Tarski fixpoint theorem [34]. The

same way, gfp
≤

ϕ is the ≤-greatest fixpoint of ϕ, if it exists.
5 In the programming language, the logical disjunction is denoted &, the conjunction
is | and the negation is ¬.
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Algorithm 1
X := I; Go := (X ≤ S);
while Go do

X ′ := I ∨ F (X);
Go := (X �= X ′) & (X ′ ≤ S);
X := X ′;

od;
return (X ≤ S);

In the general context of program analysis, this algorithm does not terminate
for the collecting semantics defining the program properties but it can be used
whenever e.g. L satisfies the ascending chain condition which is the common case
in finite-state model-checking [3, 32] (Σ is finite).

Theorem 2. Under Hyp. 1, Alg. 1 is partially correct 6: when terminating, it
returns lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. We have I ≤ I ∨ F (I) so, as shown in [11], the transfinite sequence
X0 ∆= I, Xδ+1 ∆= I ∨ F (Xδ) for all successor ordinals δ ∈ O and Xλ ∆=

∨
δ<λ Xδ

for all limit ordinals λ ∈ ω.O is increasing and ultimately stationary, its limit
being the least fixpoint of λX · I∨F (X) greater than I, that is the least fixpoint
of λX · I∨F (X). By recurrence, Xn, n ∈ O is the value of the program variable
X at the end of the n-th iteration in the loop, if any, with X0 = I being the
initial value of X upon entry of the loop.

If the algorithm does terminate then three cases must be considered.
1. The first case is when the loop is never entered so I �≤ S. Observe that

I ≤ lfp
≤
λX · I ∨F (X) so lfp

≤
λX · I∨F (X) ≤ S implies by transitivity that

I ≤ S. By contraposition, I �≤ S implies lfp
≤
λX · I ∨ F (X) �≤ S so that Alg.

1 correctly returns false since upon termination I = X �≤ S.

Otherwise the loop is iterated at least once. Upon termination after n ≥ 1
iterates, if ever, we have (Xn = I ∨ F (Xn)) | (Xn �≤ S), so two cases remain
to be considered.

2. The second case is when Xn = I ∨F (Xn). Since Xn is a fixpoint of λX · I ∨
F (X) and for all iterates Xn ≤ lfp

≤
λX · I ∨ F (X) [11], we have Xn =

lfp
≤
λX · I∨F (X). Alg. 1 returns Xn = X ≤ S whence lfp

≤
λX · I∨F (X) ≤

S as required.
3. The third and last case is when Xn = X �≤ S. For all iterates we have

Xn ≤ lfp
≤
λX · I ∨ F (X), so lfp

≤
λX · I ∨ F (X) ≤ S implies by transitivity

that Xn ≤ S. By contraposition, Xn �≤ S implies lfp
≤
λX · I ∨ F (X) �≤ S so

that Alg. 1 correctly returns false that is Xn = X �≤ S as required. ��
6 Recall that partial correctness is correctness whenever the algorithm terminates.
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2.3 Adjoined Invariance Proof Methods

Concrete Adjoinedness In the following, we assume that:

Hypothesis 2 F has an adjoint F̃ such that 〈L, ≤〉 −−−→←−−−
F

eF 〈L, ≤〉 is a Galois

connection 7.

Observe that in a Galois connection, both maps are monotonic so that Hyp. 2
subsumes Hyp. 1.2.

Example 3. We have 〈℘(Σ), ⊆〉 −−−−−−→←−−−−−−
post[τ ]

gpre[τ ] 〈℘(Σ), ⊆〉 where pre[τ ] ∆= post [τ−1],

τ−1 is the inverse of τ and p̃re[τ ](X) = ¬pre[τ ](¬X) 8. To prove this, observe

that:

p̃re[τ ](Y )
∆= ¬post [τ−1](¬Y )

= ¬{s | ∃s′ : s′ ∈ ¬Y ∧ 〈s′, s〉 ∈ τ−1} Hdef. post [τ−1]I

= {s | ∀s′ : (〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y ) Hdef. set complement ¬, inverse τ−1 of a
relation τ and logical implication =⇒.I

It follows that:

post [τ ](X) ⊆ Y

⇐⇒ Hdef. post [τ ] and set inclusion ⊆I

∀s′ ∈ Σ : (∃s ∈ Σ : s ∈ X ∧ 〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y )

⇐⇒ Hdef. logical implication =⇒I

∀s ∈ Σ : ∀s′ ∈ Σ : (s ∈ X) =⇒ ((〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y ))

⇐⇒ Hdef. set inclusion ⊆I

X ⊆ {s | ∀s′ : (〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y )}
⇐⇒ Hdef. p̃re[τ ]I

X ⊆ p̃re[τ ](Y ) . ��

Invariance Proof Methods The Floyd-Naur [21, 31] as well as Morris &
Wegbreit [30] invariance proof methods can be generalized to fixpoint checking
[13]. We have:

7 A Galois connection, written 〈L, ≤〉 −−−→←−−−
f

g 〈M, 
〉, is such that 〈L, ≤〉 and 〈M, 
〉
are posets and the maps f ∈ L �→ M and g ∈ M �→ L satisfy ∀x ∈ L : ∀y ∈ M :
f(x) 
 y if and only if x ≤ g(y). This is the semi-dual of a Galois correspondence

〈L,≤〉 −−−→←−−−
f

g 〈M,�〉 as originally defined by E. Galois.
8 ¬X

∆
= Σ \X is the set complement.
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Theorem 4. Under Hyps. 1.1 & 2,

lfp
≤
λX · I ∨ F (X) ≤ S

⇐⇒ ∃A ∈ L : I ≤ A& F (A) ≤ A&A ≤ S (1)

⇐⇒ ∃A ∈ L : I ≤ A&A ≤ F̃ (A) &A ≤ S

⇐⇒ I ≤ gfp
≤
λX ·S ∧ F̃ (X) .

Proof. By the Galois connection, F ∈ L
mon�−→ L and F̃ ∈ L

mon�−→ L are ≤-
monotonic so that by the Knaster-Kleene-Tarski fixpoint theorem [11, 34], the

extreme fixpoints do exist. Moreover:

lfp
≤
λX · I ∨ F (X) ≤ S

⇐⇒ HFor =⇒,A = lfp
≤
λX · I∨F (X) satisfiesA = I∨F (A) so (I∨F (A)) ≤ A

by reflexivity and A ≤ S. For⇐=, I ∨F (A) ≤ A so the Knaster-Tarski
fixpoint theorem [34] stating that lfp

≤
ϕ =

∧{X | ϕ(X) ≤ X}, implies
that lfp

≤
λX · I ∨ F (X) =

∧{X | (I ∨ F (X)) ≤ X} ≤ A ≤ S.I
∃A : (I ∨ F (A)) ≤ A&A ≤ S

⇐⇒ Hdef. least upper bound ∨I
∃A : I ≤ A& F (A) ≤ A&A ≤ S

⇐⇒ HGalois connection 〈L,≤〉 −−−→←−−−
F

eF 〈L,≤〉 so by definition F (A) ≤ A if and

only if A ≤ F̃ (A)I
∃A : I ≤ A&A ≤ F̃ (A) &A ≤ S

⇐⇒ Hdef. greatest lower bound ∧I
∃A : I ≤ A&A ≤ (S ∧ F̃ (A))

⇐⇒ HFor ⇐=, A = gfp
≤
λX ·S ∧ F̃ (X) satisfies A = S ∧ F̃ (A) so A ≤

(S ∧ F̃ (A)) by reflexivity and I ≤ A . For =⇒, A ≤ S ∧ F̃ (A) so
the dual of Knaster-Tarski fixpoint theorem [34] stating that gfp

≤
ϕ =∨{X | X ≤ ϕ(X)}, implies that I ≤ A ≤ ∨{X | X ≤ (S ∧ F̃ (X))} =

gfp
≤
λX ·S ∧ F̃ (X).I

I ≤ gfp
≤
λX ·S ∧ F̃ (X) ��

Corollary 5. Under Hyps. 1.1 & 2, if 〈L,≤〉 −−−→←−−−
F

eF 〈L,≤〉 then

〈L,≤〉 −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
� I � lfp

≤
�X � I∨F (X)

�S � gfp
≤
�X �S∧ eF (X) 〈L,≤〉.

Proof. This simply restates that lfp
≤
λX · I ∨ F (X) ≤ S if and only if I ≤

gfp
≤
λX ·S ∧ F̃ (X). ��
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Concrete Invariants We call A ∈ L an invariant for 〈F , I, S〉 if and only if it
satisfies the verification conditions (1) stated in Th. 4.

Theorem 6. Under Hyps. 1.1 & 2, the set I of invariants for 〈F , I, S〉 is a
complete lattice 〈I, ≤, lfp

≤
λX · I ∨ F (X), gfp

≤
λX ·S ∧ F̃ (X), ∨, ∧〉.

Proof. As shown above, lfp
≤
λX · I ∨ F (X) is an invariant, and any invariant

A is such that lfp
≤
λX · I ∨ F (X) ≤ A proving that lfp

≤
λX · I ∨ F (X) is the

≤-least invariant.
If Ai, i ∈ ∆ is a family of invariants then ∀i ∈ ∆ : I ≤ Ai so obvi-

ously, I ≤ ∨
i∈∆ Ai. Similarly, ∀i ∈ ∆ : Ai ≤ S so

∨
i∈∆ Ai ≤ S by def-

inition of lubs 9. Finally ∀i ∈ ∆ : F (Ai) ≤ Ai so
∨

i∈∆ F (Ai) ≤
∨

i∈∆ Ai.

But 〈L, ≤〉 −−−→←−−−
F

eF 〈L, ≤〉 so F is a complete joint morphism and consequently
F (

∨
i∈∆ Ai) =

∨
i∈∆ F (Ai) ≤

∨
i∈∆ Ai. We conclude that

∨
i∈∆ Ai ∈ I is an

invariant so ∨ is obviously the lub in I.
That λS · gfp≤

λX ·S ∧ F̃ (X) is the greatest invariant and ∧ is the glb 10

follows by the order-theoretic duality principle where the dual of I is S and that
of F is F̃ . ��

2.4 The Dual Concrete Fixpoint Checking Algorithm

It follows, as observed in [17], that Alg. 2 below which is based upon the iter-
ative computation of gfp

≤
λX ·S ∧ F̃ (X) is equivalent to the previous Alg. 1

for checking that lfp
≤
λX · I ∨ F (X) ≤ S. For the special case of reachability

analysis (where F̃ = p̃re[τ ]) this Alg. 2 corresponds to the backward state space
traversal which is traditional in model-checking [26]. It is nonetheless traditional
in program analysis (see a.o. [7]):

Algorithm 2
Y := S; Go := (I ≤ Y );
while Go do

Y ′ := S ∧ F̃ (Y );
Go := (Y �= Y ′) & (I ≤ Y ′);
Y := Y ′;

od;
return (I ≤ Y );

Theorem 7. Under Hyps. 1.1 & 2, Alg. 2 is partially correct: when terminating,
it returns lfp

≤
λX · I ∨ F (X) ≤ S.

9 lub is short for least upper bound.
10 glb is short for greatest lower bound.
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Proof. By order-theoretic duality extended so that the dual of I is S and that
of F is F̃ so 〈L, ≥〉 −−−→←−−−

eF

F 〈L,≥〉, we know from the proof of Alg. 1 that Alg. 2

returns true if and only if I ≤ gfp
≤
λX ·S ∧ F̃ (X) or equivalently, by Th. 4, if

and only if lfp
≤
λX · I ∨ F (X) ≤ S as desired. ��

2.5 Adjoined Concrete Fixpoint Checking

Adjoined Concrete Fixpoint Checking and Its Dual Define G
∆= λX · I∨

F (X) and G̃
∆= λX ·S ∧ F̃ (X). We have:

Theorem 8. Under Hyps. 1.1 & 2, lfp
≤
G ≤ S if and only if lfp

≤
G ≤ gfp

≤
G̃.

Proof. We have lfp
≤
G = G(lfp

≤
G) = I ∨F (lfp

≤
G) so F (lfp

≤
G) ≤ lfp

≤
G by def.

of lubs. It follows that lfp
≤
G ≤ F̃ (lfp

≤
G) by the Galois connection 〈L,≤〉 −−−→←−−−

F

eF

〈L, ≤〉. So if lfp
≤
G ≤ S then lfp

≤
G ≤ S ∧ F̃ (lfp

≤
G) hence lfp

≤
G ≤ G̃(lfp

≤
G)

proving lfp
≤
G ≤ gfp

≤
G̃ since gfp

≤
G̃ =

∨{x | x ≤ G̃(x)} by the dual of Tarski’s
fixpoint theorem [34]. Reciprocally, if lfp

≤
G ≤ gfp

≤
G̃ then lfp

≤
G ≤ S∧F̃ (gfp≤

G̃)
by the fixpoint property and def. of G̃ so lfp

≤
G ≤ S by def. of glbs. We conclude

that lfp
≤
G ≤ S if and only if lfp

≤
G ≤ gfp

≤
G̃. ��

By duality, we have

Theorem 9. Under Hyps. 1.1 & 2, I ≤ gfp
≤
G̃ if and only if lfp

≤
G ≤ gfp

≤
G̃.

Proof. By the order theoretic duality principle where I is the dual of S and F̃
that of F , hence G̃ that of G. ��

The Adjoined Concrete Fixpoint Checking Algorithm This observation
leads to the combination of the above two Algs. 1 and 2 in the new one:

Algorithm 3
X := I; Y := S; Go := (X ≤ Y );
while Go do

X ′ := I ∨ F (X); Y ′ := S ∧ F̃ (X);
Go := (X �= X ′) & (Y �= Y ′) & (X ′ ≤ Y ′);
X := X ′; Y := Y ′;

od;
return (X ≤ Y );

Optimizations including parallel versions can be easily derived from the above
basic version of Alg. 3. They will not be considered here, although they are es-
sential to be more time-efficient than the previous Algs. 1 and 2. The advantage
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of this parallel version of Alg. 3 is that errors lfp
≤
λX · I∨F (X) �≤ S may be dis-

covered faster than with either Alg. 1 or Alg. 2 since the (parallel) computation
of the fixpoints stops as soon as a fixpoint is reached or an error is found.

The partial correctness proof of the algorithm is not completely trivial and is
given below. Total correctness, hence termination, requires additional hypotheses
such as L satisfies the ascending and descending chain conditions e.g. following
from the finite-state hypothesis.

Theorem 10. Under Hyps. 1.1 & 2, Alg. 3 is partially correct: when terminat-
ing, it returns lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. By the Galois connection 〈L,≤〉 −−−→←−−−
F

eF 〈L,≤〉, F is 0-strict and a complete

∨-morphism so G is a complete ∨-morphism. Let X0 = I be the initial value of
X in the loop and Xn its value at the end of the n-th iteration. Let ϕ0(x) ∆= x

and ϕn+1(x) ∆= ϕ(ϕn(x)). We have X0 = I = F 0(I) = I ∨ 0 = I ∨ F (0) = G(0).
Assume by induction hypothesis that Xn =

∨n
k=0 F k(I) = Gn+1(0). We have

Xn+1 = I ∨ F (Xn) = G(Xn) = G(Gn+1(0)) = Gn+2(0). Moreover Xn+1 =
I∨F (Xn) = I∨F (

∨n
k=0 F k(I)) = I∨∨n

k=0 F (F k(I)) = F 0(I)∨∨n
k=0 F k+1(I) =∨n+1

k=0 F k(I). It follows by recurrence and the Kleene-Tarski theorem [11, 34] that
∀n ∈ O : I ≤ Xn ≤ ∨

k≥0 Gn(0) ≤ lfp
≤
G.

The order-theoretic dual of the above proof, extended so that the dual of I is
S, that of F is F̃ so that of G is G̃, shows that ∀n ∈ O : gfp

≤
G̃ ≤ ∧

k≥0 G̃n(1) ≤
Y n ≤ S.

Combining the above results by transitivity, we observe that if lfp
≤
G ≤ S

then lfp
≤
G ≤ gfp

≤
G̃ so ∀n ∈ O : Xn ≤ lfp

≤
G ≤ gfp

≤
G̃ ≤ Y n. By contraposition

∃n ∈ O : Xn �≤ Y n implies lfp
≤
G �≤ S.

If the algorithm terminates then four cases must be considered.
1. The first case is when the loop is never entered so I �≤ S. We have lfp

≤
λX · I∨

F (X) ≤ S which implies I ≤ gfp
≤
λX ·S∧F̃ (X) = S∧F̃ (gfp≤

λX ·S∧F̃ (X))
by the fixpoint property so that I ≤ S by definition of least upper bounds.
So I �≤ S implies lfp

≤
λX · I ∨ F (X) �≤ S. Therefore the algorithm returns

false, as required;
Otherwise the loop is entered at least once and termination implies (X =
X ′) ∨ (Y = Y ′) ∨ (X �≤ Y ).

2. In the second case, termination is with X �≤ Y so ∃n ∈ O : Xn �≤ Y n which
implies lfp

≤
G �≤ S so lfp

≤
λX · I∨F (X) �≤ S and the algorithm returns false,

as required;
3. The third case is (X = X ′) & (X ≤ Y ). We have X = G(X) and ∃n ∈
O : X = Xn ≤ lfp

≤
G so X = lfp

≤
G by def. of the least fixpoint. Moreover,

Y = Y n ≤ S whence X ≤ Y implies lfp
≤
G ≤ S that is lfp

≤
λX · I∨F (X) ≤ S

and the algorithm returns true, as required.
4. The fourth and final case is (Y = Y ′) & (X ≤ Y ). The order-theoretic dual

of the above proof, extended so that the dual of I is S, that of F is F̃ so
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that of G is G̃, shows that I ≤ gfp
≤
λX ·S ∧ F̃ (X) or equivalently, by Th. 4,

lfp
≤
λX · I ∨ F (X) ≤ S and the algorithm returns true, as required. ��

3 Abstract Fixpoint Checking

3.1 Abstract Interpretation

In the context of program analysis, abstraction [10] is needed for expressive-
ness (the elements of L are not computer-representable) and undecidability
(the fixpoints are not effectively computable). In the context of model-checking
[4], abstraction is needed for concrete complexity reasons, because of machine
memory-size (so called state-explosion problem) and/or computation time lim-
itations. The difference is that in program analysis, the concrete semantics is
not computable whereas it is in the case of model-checking 11. Abstract inter-
pretation [10, 12] can be used in both cases, but an important difference is that
the abstraction/concretization can be considered to be computable for model-
checking which is hardly conceivable for program analysis. In the latter case
the abstraction/concretization process must be handled by hand (may be with
some computer assistance) whereas in the first case, it can be (at least partially)
automatized (see e.g. [5, 20, 24]).

3.2 The Abstract Fixpoint Checking Algorithm

We now consider an abstract complete lattice 〈M, �, ⊥, �, �, �〉 which is an
abstraction of 〈L,≤, 0, 1,∨,∧〉 by the abstraction/concretization pair 〈α, γ〉. For
simplicity we assume that any concrete property p ∈ L has a best approximation
α(p) ∈M which is tantamount to assuming that 〈L,≤〉 −−−→←−−−α

γ 〈M,�〉 is a Galois
connection [12, 14]:

Hypotheses 3 1. The abstract domain 〈M,�,⊥,�,�,�〉 is a complete lattice;
2. 〈L,≤〉 −−−→←−−−

α

γ 〈M,�〉.

Example 11. As observed in [18], the abstraction which is almost exclusively
used in abstract model-checking has the form αh(X) ∆= {h(x) | x ∈ X} and
γh(Y ) ∆= {x | h(x) ∈ Y } where h ∈ Σ �→ Σ. Considering the function h as a
relation, we have αh = post [h] and γh = p̃re[h] so that 〈℘(Σ),⊆〉 −−−→←−−−

αh

γh 〈℘(Σ),
⊆〉, as shown in Ex. 3. An example for Σ = Z consists in choosing h(z) to be
the sign of z [12]. ��
11 Obviously, if the state space is infinite then the situation may be the same in model-
checking as it is in program analysis. However the boolean abstractions used in
model-checking with BDD encoding, are too weak when considering complex data
structures, higher-order recursion, etc. which are a common difficulty in program
analysis.
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The abstract form Alg. 4 below of the fixpoint checking Alg. 1 is classical in
abstract interpretation [7, 10, 12] 12:

Algorithm 4
X := α(I); Go := (γ(X) ≤ S);
while Go do

X ′ := α(I ∨ F (γ(X)));
Go := (X �= X ′) & (γ(X ′) ≤ S);
X := X ′;

od;
return if (γ(X) ≤ S) then true else I don’t know;

Theorem 12. Under Hyps. 1.1 & 3, Alg. 4 is partially correct: if it terminates
and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. We have 〈L, ≤〉 −−−→←−−−α

γ 〈M, �〉 so α is a complete join morphism hence
α(I ∨ F (γ(X))) = α(I) � α(F (γ(X))). It follows that α(I) ≤ α(I) � α ◦ F ◦
γ(I) 13 so, as shown in [11], the transfinite sequence X0 ∆= α(I), Xδ+1 ∆= α(I ∨
F (γ(Xδ)) for all successor ordinals δ ∈ O and Xλ ∆=

⊔
δ<λ Xδ for all limit

ordinals λ ∈ ω.O is increasing and ultimately stationary, its limit being the least
fixpoint of λX ·α(I ∨ F (γ(X))) greater than α(I), that is the least fixpoint of
λX ·α(I ∨ F (γ(X)). By recurrence, Xn is the value of the program variable X
at the end of the n-th iteration in the loop, if any, with X0 = α(I) being the
initial value of X upon entry of the loop.

If the algorithm does terminate then three cases must be considered.
1. The first case is when the loop is never entered so γ(I) �≤ S. Then Alg. 4

returns I don’t know which is certainly correct.
Otherwise the loop is iterated at least once. Upon termination after n ≥ 1
iterates, if ever, we have (Xn = α(I ∨F (γ(Xn))) | (γ(Xn) ≤ S), so two cases
remain to be considered.

2. The second case is when Xn = α(I ∨ F (γ(Xn))). Since Xn is a fixpoint of
λX ·α(I ∨ F (γ(X))) and for all iterates Xn � lfp

�
α(I ∨ F (γ(X))) [11], we

have Xn = lfp
�
λX ·α(I ∨ F (γ(X))). Alg. 4 checks γ(Xn) = γ(X) ≤ S.

When returning true, we have γ(lfp
�
λX ·α(I ∨ F (γ(X)))) ≤ S. By a classi-

cal fixpoint approximation result of abstract interpretation [12, Th. 7.1.0.4],
α(lfp

≤
λX · I ∨ F (X)) � lfp

�
λX ·α(I ∨ F ◦ γ(X)) so by 〈L, ≤〉 −−−→←−−−α

γ 〈M,

�〉, we have lfp
≤
λX · I ∨ F (X) ≤ γ(lfp

�
λX ·α(I ∨ F ◦ γ(X))) whence by

transitivity lfp
≤
λX · I ∨ F (X) ≤ S as required.

12 Since in program analysis neither γ nor ≤ is computable the termination condition
γ(X) ≤ S is replaced by the abstract form X 
 α(S). When assuming that S is
an abstract specification in that S = γ(α(S)), this abstract condition is stronger
(whence correct) since X 
 α(S) implies by monotony that γ(X) 
 γ(α(S)) = S.

13 ◦ is functional composition f ◦ g(x)
∆
= f(g(x)).
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3. The third and last case is when γ(Xn) ≤ S. Then γ(Xn) = γ(X) �≤ S so that
Alg. 4 returns I don’t know which is certainly correct. ��

3.3 Partial Completeness

We have seen that any abstraction 〈α, γ〉 is sound in that Alg. 4 returns true
only if lfp

≤
λX · I ∨ F (X) ≤ S.

This abstraction is said to be partially complete if, whenever Alg. 4 terminates
and lfp

≤
λX · I ∨ F (X) ≤ S then the returned result is true14.

Because soundness is mandatory, partial completeness corresponds to the
case when Alg. 4 returns true upon termination exactly when lfp

≤
λX · I ∨

F (X) ≤ S, that is Alg. 4 is equivalent to Alg. 1, up to termination 15.

3.4 Partially Complete Abstractions for Algorithm 4

Characterization of Partially Complete Abstractions for Algorithm 4
It was informally observed in [15] (and similarly in [27]) that partial complete-
ness in abstract interpretation requires an invariance proof. More formally the
abstract domain must contain the exact representation A = α(A′) of an invariant
A′ = γ(A) for 〈F , I, S〉:
Theorem 13. Under Hyps. 1.1 & 3, the abstraction 〈α, γ〉 is partially complete
for Alg. 4 if and only if α(L) contains an abstract value A such that γ(A) is an
invariant for 〈F , I, S〉.
Proof. Assume that 〈α, γ〉 is a partially complete abstraction for Alg. 4. If
lfp

≤
λX · I ∨ F (X) ≤ S then Alg. 4 must return true so upon exit γ(X) ≤ S.

By definition of the loop termination condition ¬Go, the loop must have been
entered at least once. So upon termination, after n ≥ 1 iterations, the final value
Xn of X satisfies Xn = α(I ∨ F (γ(X))) = α(I) � α ◦ F ◦ γ(Xn) so α(I) � Xn

and α ◦ F ◦ γ(Xn) � Xn by definition of lubs, whence by 〈L,≤〉 −−−→←−−−α

γ 〈M,�〉,
I ≤ γ(Xn) and F ◦ γ(Xn) ≤ γ(Xn). We conclude that γ(Xn) is an invariant
for 〈F , I, S〉, so A = Xn.

Reciprocally let A ∈ α(L) be such γ(A) is an invariant for 〈F , I, S〉. We
have I ≤ γ(A) so by 〈L, ≤〉 −−−→←−−−α

γ 〈M, �〉 α(I) � A whence X0 � A. By
recurrence, assume that Xn � A and that one more iterate is needed in the
loop. We have I ≤ γ(A) and F (γ(A)) ≤ γ(A) so by 〈L, ≤〉 −−−→←−−−α

γ 〈M, �〉,
14 Observe that this notion of partial completeness is different from the notions of

fixpoint completeness (α(lfp
≤

G) = lfp
�

α ◦ G ◦ γ) and the stronger one of local
completeness (α ◦ G = α ◦ G ◦ γ ◦ α) introduced in [12] and further studied in
[22, 23].

15 Observe that for locally complete abstractions, termination of the concrete Alg. 1
implies that of the abstract Alg. 4 since, as shown in [9, Th. 3], convergence of the
abstract iterates to a fixpoint is faster than that of the concrete iterates for locally
complete abstractions.
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α(I) � A and α(F (γ(A))) � A whence by monotonyXn+1 = α(I∨F (γ(Xn))) �
α(I ∨ F (γ(A))) = α(I) � α(F (γ(A))) � A. Observe that upon termination, if
any, X has value Xn such that Xn � A so by monotony γ(Xn) ≤ γ(A). Since
γ(A) is an invariant γ(A) ≤ S so by transitivity X = γ(Xn) ≤ S whence the
algorithm returns true, if it terminates, as required. ��

The Most Abstract Partially Complete Abstraction for Algorithm 4
Among the partially complete abstractions, we are interested in the simplest
ones, with a minimal number of abstract values, in particular those corresponding
to the weakest or strongest concrete properties. Formally:

Definition 14. The most abstract partially complete abstraction 〈α, γ〉, if it
exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible cardinality;
2. If another abstraction 〈α′,γ′〉 is a partially complete abstraction with the same

cardinality, then there exists a bijection β such that ∀x ∈ M : γ′(β(x)) ≤
γ(x) 16.

Theorem 15. Under Hyps. 1.1 & 3, the most abstract partially complete ab-
straction for Alg. 4 is such that:
– if S = 1 then M = {�} where α

∆= λX ·� and γ
∆= λY · 1;

– if S �= 1 then M = {⊥,�} where ⊥ � ⊥ @ � � � with 〈α, γ〉 such that:

α(X) ∆= ⊥ if X ≤ gfp
≤
λX ·S ∧ F̃ (X)

α(X) ∆= � otherwise

γ(⊥) ∆= gfp
≤
λX ·S ∧ F̃ (X) (2)

γ(�) ∆= 1

Proof. In the first case S = 1, we have I ≤ 1, F (1) ≤ 1 and 1 ≤ S so γ(�) = 1
is invariant for 〈F , I, S〉 whence, by Th. 13, the abstraction 〈α, γ〉 is partially
complete for Alg. 4. M = {�} has the smallest possible cardinality since a
complete lattice is not empty (�∅ must exist). M = {�} is obviously the most
abstract since γ(�) = 1.

The second case is when S �= 1. By definition (2), α(L) contains ⊥ such that
γ(⊥) ∆= gfp

≤
λX ·S ∧ F̃ (X) which, by Th. 6, is an invariant so that, by Th. 13,

the abstraction 〈α, γ〉 is partially complete for Alg. 4.
To show that the cardinality of M is minimal, let us consider another M ′ =

α′(L) such that 〈α′, γ′〉 is partially complete for Alg. 4. Observe that L is a
complete lattice whence M ′ = α(L) is also a complete lattice whence not empty.
Let �′ be its supremum. We have α′(1) � �′ whence 1 ≤ γ′(�′) so 1 = γ′(�′)
by antisymmetry since 1 is the supremum. Since S �= 1, we have γ′(�′) �≤ S so

16 Otherwise stated, the abstract values in α(L) are more approximate than the corre-
sponding elements in α′(L).
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that γ′(�′) is not an invariant for 〈F , I, S〉. By Th. 13, it follows that M ′ must
contain another element A ∈M ′ such that γ′(A) is an invariant for 〈F , I, S〉 so
A �= �′ proving that the cardinality of M ′ = α′(L) must be at least 2. It follows
that the cardinality of M is minimal.

To show that 〈α, γ〉 is the most abstract, let us consider another M ′ = α′(L)
of cardinality 2 (i.e. M ′ = {⊥′,�′}, ⊥′ �′ ⊥′

@
′ �′ �′ �′) such that 〈α′,

γ′〉 is partially complete for Alg. 4. Since �′ is the supremum of M ′ and 〈L,

≤〉 −−−→←−−−
α′

γ′
〈M ′,�′〉, we have γ′(�′) = 1 = γ(�) which are not invariant for 〈F , I,

S〉. By partial completeness hypothesis and Th. 13, γ′(⊥′) must be an invariant
for 〈F , I, S〉 so, by Th. 6, γ′(⊥′) ≤ gfp

≤
λX ·S ∧ F̃ (X) = γ(⊥). The bijection

β(⊥) = ⊥′ and β(�) = �′ is such that ∀x ∈ M : γ′(β(x)) ≤ γ(x), proving that
〈α, γ〉 is the most abstract partially complete abstraction for Alg. 4. ��

The Least Abstract Partially Complete Abstraction for Algorithm 4
The least abstract partially complete abstraction is defined dually to definition
14.

Theorem 16. Under Hyps. 1.1 & 3, the least abstract partially complete ab-
straction for Alg. 4 is such that:
– if I = 1 then M = {�} where α

∆= λX ·� and γ
∆= λY · 1;

– if I �= 1 then M = {⊥,�} where ⊥ � ⊥ @ � � � with 〈α, γ〉 such that:

α(X) ∆= ⊥ if X ≤ lfp
≤
λX · I ∨ F (X)

α(X) ∆= � otherwise

γ(⊥) ∆= lfp
≤
λX · I ∨ F (X) (3)

γ(�) ∆= 1

Proof. In the first case I = 1, we have lfp
≤
λX · I ∨F (X) = 1 so if lfp

≤
λX · I ∨

F (X) ≤ S then 1 ≤ S so S = 1. We have I = 1 ≤ 1, F (1) ≤ 1 and 1 ≤ 1 = S
so γ(�) = 1 is invariant for 〈F , I, S〉 whence, by Th. 13, the abstraction 〈α, γ〉
is partially complete for Alg. 4. M = {�} has the smallest possible cardinality
since a complete lattice is never empty. let M ′ = {�′} be another partially
complete abstraction 〈α′, γ′〉 with the same cardinality. We have γ′(�′) which is
an invariant for 〈F , I, S〉 so γ′(�′) ≥ I = 1 proving that γ′(�′) = 1. We have
∀x ∈M : γ′(β(x)) ≤ γ(x) by definition β(�) = �′.

The second case is when I �= 1. By definition (3), α(L) contains ⊥ such that
γ(⊥) ∆= lfp

≤
λX · I ∨ F (X) which, by Th. 6, is an invariant so that, by Th. 13,

the abstraction 〈α, γ〉 is partially complete for Alg. 4.
To show that the cardinality of M is minimal, let us consider another M ′ =

α′(L) such that 〈α′, γ′〉 is partially complete for Alg. 4. Observe that L is a
complete lattice whence M ′ = α(L) is also a complete lattice whence not empty.
Let �′ be its supremum. We have α′(1) � �′ whence 1 ≤ γ′(�′) so 1 = γ′(�′)
by antisymmetry since 1 is the supremum. Since I �= 1, we have I �≤ γ′(�′) so
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that γ′(�′) is not an invariant for 〈F , I, S〉. By Th. 13, it follows that M ′ must
contain another element A ∈M ′ such that γ′(A) is an invariant for 〈F , I, S〉 so
A �= �′ proving that the cardinality of M ′ = α′(L) must be at least 2. It follows
that the cardinality of M is minimal.

To show that 〈α, γ〉 is the least abstract, let us consider another M ′ = α′(L)
of cardinality 2 (i.e. M ′ = {⊥′,�′}, ⊥′ �′ ⊥′

@
′ �′ �′ �′) such that 〈α′,

γ′〉 is partially complete for Alg. 4. Since �′ is the supremum of M ′ and 〈L,

≤〉 −−−→←−−−
α′

γ′
〈M ′,�′〉, we have γ′(�′) = 1 = γ(�) which are not invariant for 〈F , I,

S〉. By partial completeness hypothesis and Th. 13, γ′(⊥′) must be an invariant
for 〈F , I, S〉 so, by Th. 6, γ(⊥) ≤ lfp

≤
λX · I ∨ F (X) ≤ γ′(⊥′). The bijection

β(⊥) = ⊥′ and β(�) = �′ is such that ∀x ∈ M : γ′(β(x)) ≥ γ(x), proving that
〈α, γ〉 is the least abstract partially complete abstraction for Alg. 4. ��

The Complete Lattice of Minimal Partially Complete Abstractions
for Algorithm 4 By Th. 6, the set I of invariants is a complete lattice 〈I, ≤,
lfp

≤
λX · I ∨ F (X), gfp

≤
λX ·S ∧ F̃ (X), ∨, ∧〉. Its abstract image leads to the

partially complete abstractions of minimal cardinality for Alg. 4:

Theorem 17. Under Hyps. 1.1 & 3, the set A of partially complete abstractions
of minimal cardinality for Alg. 4 is the set of all 〈M, �, α, γ〉 such that M =
{⊥,�} with ⊥ � ⊥ � � � �, Hyp. 3.2 holds, γ(⊥) ∈ I and ⊥ = � if and only
if γ(�) ∈ I.

The relation 〈{⊥,�},�,α〉γ ! 〈{⊥′,�′},�′,α′〉γ′ is a pre-ordering on A. Let
〈{⊥,�},α,γ〉 ∼= 〈{⊥′,�′},α′,γ′〉 if and only if γ(⊥) = γ′(⊥′) be the corresponding
equivalence.

The quotient A/∼= is a complete lattice 17 for ! with infimum class represen-
tative 〈M, α, γ〉 and supremum 〈M, α, γ〉.
Proof. We have γ(�) ∈ I or γ(⊥) ∈ I so by Th. 13, 〈M,�, α, γ〉 is a partially
complete abstraction for Alg. 4.

By Hyp. 3.2, α(1) � � so 1 ≤ γ(�) whence γ(�) = 1. If γ(�) ∈ I then
⊥ = � so the cardinality is minimal since M is a complete lattice whence not
empty. Otherwise γ(�) �∈ I and γ(⊥) ∈ I so ⊥ �= �. Again the cardinality of M
is minimal since by Th. 13, M must contain an element A such that γ(A) ∈ I
and, in this second case, A cannot be �. So we conclude that A is the set of
partially complete abstractions of minimal cardinality for Alg. 4.

By definition ! is a pre-order on A since ≤ is a partial order on L. Conse-
quently the restriction of ! to the representatives of the equivalent classes of the
quotient A/∼= is a poset.

Let 〈Mi,�i, αi, γi〉, i ∈ ∆ be given elements of A. By Th. 6, ∨
i∈∆ γi(⊥) ∈ I

is an invariant. So there is some 〈M, �, α, γ〉 ∈ A (may be with ⊥ = �) such
that γ(⊥) = ∨

i∈∆ γi(⊥). Trivially, the class of 〈M,�, α, γ〉 ∈ A is the lub of the
set {〈Mi,�i, αi, γi〉 | i ∈ ∆} for !.
17 Observe however that it is not a sublattice of the lattice of abstract interpretations
of [10, 12] with reduced product as glb.
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The fact that 〈M,α,γ〉 and 〈M,α,γ〉 are representative of the extreme classes
of A/∼= is also a direct consequence of Th. 6. ��

3.5 Abstract Adjoinedness

In the following, we assume that we have a dual abstraction:

Hypothesis 4 〈L,≥〉 −−−→←−−−
eα

eγ 〈M,#〉.

Example 18. A classical example [18] when 〈L, ≤, 0, 1, ∨, ∧, ¬〉 and 〈M, �, ⊥,

�, �, �, v〉 are complete boolean lattices and 〈L, ≤〉 −−−→←−−−α

γ 〈M, �〉 is to define

α̃ = v ◦ α ◦ ¬ and γ̃ = ¬ ◦ γ ◦ v so that 〈L, ≥〉 −−−→←−−−
eα

eγ 〈M, #〉 or equivalently
〈M,�〉 −−−→←−−−

eγ

eα 〈L,≤〉. Indeed:

α̃(X) # Y

⇐⇒ v ◦ α ◦ ¬(X) # Y Hdef. α̃I

⇐⇒ α ◦ ¬(X) � vY Hcontraposition in MI

⇐⇒ ¬(X) ≤ γ(vY ) H〈L,≤〉 −−−→←−−−α

γ 〈M,�〉I
⇐⇒ X ≥ ¬ ◦ γ ◦ v(Y ) Hcontraposition in LI

⇐⇒ X ≥ γ̃(Y ) Hdef. γ̃I

For a typical example, we have 〈℘(Σ),⊆〉 −−−−−−→←−−−−−−
post [τ ]

gpre[τ ] 〈℘(Σ),⊆〉 and p̃re[τ ](X) =

¬pre[τ ](¬X) (see Ex. 3) so that by defining p̃ost [τ ](X) = ¬post [τ ](¬X) we have

〈℘(Σ),⊇〉 −−−−−−→←−−−−−−
gpost[τ ]

pre[τ ] 〈℘(Σ),⊇〉 or equivalently 〈℘(Σ),⊆〉 −−−−−−→←−−−−−−
pre[τ ]

gpost [τ ] 〈℘(Σ),⊆〉. ��

We have:

Theorem 19. Under Hyps. 2, 3.2 & 4, 〈M,�〉 −−−−−−→←−−−−−−
α◦F◦eγ

eα◦ eF◦γ 〈M,�〉.

Proof.

α ◦ F ◦ γ̃(X)⇐⇒ Y

⇐⇒ HGalois connection 〈L,≤〉 −−−→←−−−α

γ 〈M,⇐⇒〉I
F ◦ γ̃(X) ≤ γ(Y )

⇐⇒ HGalois connection 〈L,≤〉 −−−→←−−−
F

eF 〈L,≤〉I
γ̃(X) ≤ F̃ ◦ γ(Y )

⇐⇒ F̃ ◦ γ(Y ) ≥ γ̃(X) Hinverse ≥ of ≤I

⇐⇒ HGalois connection 〈L,≥〉 −−−→←−−−
eα

eγ 〈M,#〉I
α̃ ◦ F̃ ◦ γ(Y ) # X

⇐⇒ X � α̃ ◦ F̃ ◦ γ(Y ) Hinverse � of #I ��
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3.6 The Dual Abstract Fixpoint Checking Algorithm

The dual of Alg. 4 is the following:

Algorithm 5
Y := α̃(S); Go := (I ≤ γ̃(Y ));
while Go do

Y ′ := α̃(S ∧ F̃ (γ̃(Y )));
Go := (Y �= Y ′) & (I ≤ γ̃(Y ′));
Y := Y ′;

od;
return if (I ≤ γ̃(Y )) then true else I don’t know;

Theorem 20. Under Hyps. 1.1, 2, 3.1 & 4, Alg. 5 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. The proof is the order-theoretic dual of the proof of Alg. 4 where the
dual of I is S, that of F is F̃ and that of 〈α, γ〉 satisfying Hyp. 3.2 is 〈α̃, γ̃〉
satisfying Hyp. 4. Its conclusion is that upon termination while returning true,
I ≤ gfp

≤
λX ·S ∧ F̃ (X) that is, by Th. 4, lfp

≤
λX · I ∨ F (X) ≤ S. ��

3.7 Characterization of Partially Complete Abstractions for
Algorithm 5

By Th. 4, the notion of partial completeness of Sec. 3.3 is self-dual and A is an
invariant for 〈F , I, S〉 if and only if A is a dual invariant for 〈F̃ , S, I〉. Therefore
we have:

Theorem 21. Under Hyps. 1.1, 2, 3.1, & 4, the abstraction 〈α̃, γ̃〉 is partially
complete for Alg. 5 if and only if α̃(L) contains an abstract value A such that
γ̃(A) is an invariant for 〈F , I, S〉.

Proof. The proof of Th. 21 is the order-theoretic dual of the proof of Th. 13
where the dual of I is S, that of F is F̃ and that of 〈α, γ〉 satisfying Hyp. 3.2 is
〈α̃, γ̃〉 satisfying Hyp. 4. ��

3.8 The Complete Lattice of Minimal Partially Complete
Abstractions for Algorithm 5

Theorem 22. Under Hyps. 1.1, 4 & 3.1, the dual of Th. 17 holds for Alg. 5.

Proof. The proof of Th. 21 is the order-theoretic dual of the proof of Th. 17
where the dual of I is S, that of F is F̃ and that of 〈α, γ〉 satisfying Hyp. 3.2 is
〈α̃, γ̃〉 satisfying Hyp. 4. ��
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3.9 The Particular Case of Complement Abstraction

Alg. 5 is better known in the important particular case when the following hy-
potheses 5 below, which scope is local to this Sec. 3.9, hold:

Hypotheses 5 1. 〈L,≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;
2. 〈M,�,⊥,�, �, �,v〉 is a complete boolean lattice;
3. 〈L,≤〉 −−−→←−−−

α

γ 〈M,�〉;
4. 〈L,≤〉 −−−→←−−−

F

eF 〈L,≤〉;
5. F̃

∆= ¬ ◦ F ◦ ¬, α̃
∆= v ◦ α ◦ ¬ and γ̃

∆= ¬ ◦ γ ◦ v.

in which case Hyp. 4 holds so that Alg. 5 becomes [19]:

Algorithm 6
Z := α(¬S); Go := (I ∧ γ(Z) = 0);
while Go do

Z ′ := α(¬S ∨ F (γ(Z)));
Go := (Z �= Z ′) & (I ∧ γ(Z ′) = 0);
Z := Z ′;

od;
return if (I ∧ γ(Z) = 0) then true else I don’t know;

Corollary 23. Under Hyp. 5, Alg. 6 is partially correct: if it terminates and
returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. First observe that 〈L,≥〉 −−−→←−−−
eα

eγ 〈M,#〉 since:

α̃(X) # Y

⇐⇒v(α(¬(X))) # Y Hdef. 5.5 of α̃I

⇐⇒α(¬(X))) � v(Y ) Hdef. complement v in Hyp. 5.2I

⇐⇒¬(X)) ≤ γ(v(Y )) HGalois connection of Hyp. 5.3I

⇐⇒¬ ◦ γ ◦ v(Y ) ≤ X Hdef. complement ¬ in Hyp. 5.1I

⇐⇒X ≥ γ̃(Y ) Hdef. 5.5 of α̃I

Then we observe that the value of Z in Alg. 6 is that of vY in Alg. 5. ��

3.10 The Adjoined Abstract Fixpoint Checking Algorithm

If follows that Alg. 3 can be used in the abstract to check that lfp
≤
λX · I ∨

F (X) ≤ S (assuming, as is the case for model-checking, that abstraction/
concretization is computable):
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Algorithm 7
X := α(I); Y := α̃(S); Go := (γ(X) ≤ S) & (I ≤ γ̃(Y ));
while Go do

X ′ := α(I ∨ F ◦ γ(X)); Y ′ := α̃(S ∧ F̃ ◦ γ̃(Y ));
Go := (X �= X ′) & (Y �= Y ′) & (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′));
X := X ′; Y := Y ′;

od;
return if (γ(X) ≤ S) | (I ≤ γ̃(Y )) then true else I don’t know;

Theorem 24. Under Hyps. 1.1, 2, 3.1 & 4, Alg. 7 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. The respective values of X and Y after n ≥ 0 iterations, if ever, are
Xn and Y n as respectively defined in the proofs of Th. 10 and Th. 20. If the
algorithm does terminate, then
1. either the loop is never entered so the values of X and Y are respectively

X0 = α(I) and Y 0 = α̃(S) such that γ(X) �≤ S | I �≤ γ̃(Y ), in which case Alg.
7 correctly returns I don’t know ;
or the loop is entered at least once so that upon exit after n ≥ 1 iterations, we
have Xn = α(I∨F ◦ γ(Xn))|Y n = α̃(S∧F̃ ◦ γ̃(Y n))|γ(Xn) �≤ S |I �≤ γ̃(Y n).

2. If γ(Xn) �≤ S | I �≤ γ̃(Y n) then Alg. 7 correctly returns I don’t know ;

otherwise, we have γ(Xn) ≤ S & I ≤ γ̃(Y n) and two cases remain to be
considered.

3. If Xn = α(I ∨ F ◦ γ(Xn)) & γ(Xn) ≤ S, then we conclude as in the proof of
Th. 10;

4. if Y n = α̃(S ∧ F̃ ◦ γ̃(Y n)) & I �≤ γ̃(Y n), then we conclude as in the proof of
Th. 20. ��

3.11 The Adjoined Abstract Fixpoint Abstract Checking Algorithm

In program static analysis, one cannot compute γ, γ̃ and ≤ and sometimes
neither I nor S may even be machine representable. So Alg. 7, which can be
useful in model-checking, is of limited interest in program static analysis. In
that latter case, the termination condition (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′)) must be
checked in the abstract, as proposed in Alg. 8 below. This is less precise but is
nevertheless correct with the following:

Hypotheses 6 1. ∀X ∈ L : γ ◦ α̃(X) ≤ X;
2. ∀X ∈ L : X ≤ γ̃ ◦ α(X).

Example 25. Continuing Ex. 11 with α
∆= post [h], γ

∆= p̃re[h], α̃
∆= p̃ost [h] and

γ̃
∆= pre[h], we have:
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γ̃ ◦ α(X)

= Hdef. γ̃ = pre[h] = λX · {x | h(x) ∈ X} and α = post [h] = λX · {h(y) |
y ∈ X}I

{x | ∃y ∈ X : h(x) = h(y)}
⊇ X . Hchoosing y = xI

In particular for all X ∈ L:

¬X ⊆ γ̃ ◦ α(¬X)

=⇒ ¬γ̃ ◦ α(¬X) ⊆ X Hby contraposition in LI

=⇒ H γ̃ = pre[h] = ¬ ◦ p̃re[h] ◦ ¬ = ¬ ◦ γ ◦ ¬I
¬ ◦ ¬ ◦ γ ◦ ¬ ◦ α ◦ ¬(X) ⊆ X

=⇒ H ¬ ◦ α ◦ ¬ = ¬ ◦ post [h] ◦ ¬ = p̃ost [h] = α̃ and ¬ ◦ ¬(Y ) = Y I

γ ◦ α̃(X) ⊆ X . ��

Algorithm 8
X := α(I); Y := α̃(S); Go := (X � Y );
while Go do

X ′ := α(I) � α ◦ F ◦ γ(X); Y ′ := α̃(S) � α̃ ◦ F̃ ◦ γ̃(Y );
Go := (X �= X ′) & (Y �= Y ′) & (X ′ � Y ′);
X := X ′; Y := Y ′;

od;
return if X � Y then true else I don’t know;

Theorem 26. Under Hyps. 1.1, 2, 3.1, 4 & 6, Alg. 8 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. If the loop ever terminates after n ≥ 0 iterations then upon exit we have
α(I) � Xn = X and Y = Y n � α̃(S). So if X � Y then by Hyp. 6 and
monotony, γ(X) ≤ γ(Y ) ≤ γ ◦ α̃(S) ≤ S and I ≤ γ̃ ◦ α(I) ≤ γ̃(X) ≤ γ̃(Y ). So
X � Y implies γ(X) ≤ S& I ≤ γ̃(Y ) and the argument used in the proof of Th.
24 concludes the partial correctness proof of Alg. 8. ��

Theorem 27. Under Hyps. 1.1, 2, 3.1, 4 & 6, the abstraction 〈α, γ〉 and 〈α̃, γ̃〉
is partially complete for Alg. 4 if and only if either α(L) contains an abstract
value A such that γ(A) is an invariant for 〈F , I, S〉 or dually α̃(L) contains an
abstract value Ã such that γ̃(Ã) is an invariant for 〈F , I, S〉.

Proof. The proof is similar to that of Th. 13 or its dual.
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Then Def. 14 and Th. 15 are easily generalized in order to characterize the most
abstract partially complete abstractions 〈α, γ〉 and 〈α̃, γ̃〉 for Alg. 8.

Finally, we can apply Alg. 3 to 〈M, �〉 −−−−−−→←−−−−−−
α◦F◦eγ

eα◦ eF◦γ 〈M, �〉. We get Alg. 9

below using basic operations performing exclusively on the abstract domain.
The correctness of Alg. 9 follows from:

Theorem 28. Under Hyps. 1.1, 1.2 or 2, 3 and 6, we have lfp
≤
λX · I ∨F (X)

≤ γ(lfp
�
λX ·α(I) � α ◦ F ◦ γ̃(X)).

Proof. Let Xδ, δ ∈ O and X̃δ, δ ∈ O the respective transfinite sequences of

iterates for λX · I∨F (X) and λX ·α(I)�α ◦ F ◦ γ̃(X) which by monotony and

definition on complete lattices are well-defined, increasing, ultimately stationary

and respectively converging to lfp
≤
λX · I ∨ F (X) and lfp

�
λX ·α(I) � α ◦ F ◦

γ̃(X) as shown in [11]. Let us show by transfinite induction that ∀δ ∈ O : X̃δ #
α(Xδ). For the basis, X̃0 ∆= ⊥ = α(0) = α(X0). For successor ordinals:

X̃δ+1

= α(I) � α ◦ F ◦ γ̃(X̃δ) Hby def. of the iterates.I

# α(I) � α ◦ F ◦ γ̃ ◦ α(Xδ) Hby ind. hyp. and monotonyI

# α(I) � α ◦ F (Xδ) Hby Hyp. 6.2 and monotonyI

= α(I ∨ F (Xδ)) Hby Hyp. 3.2 so that α preserves lubsI

= Xδ+1 Hby def. of the iterates.I

For limit ordinals λ ∈ ω.O :

X̃λ

=
⊔

β<λ

X̃β Hby def. of the iterates.I

#
⊔

β<λ

α(Xβ) Hind. hyp. and def. lubsI

# α(
∨

β<λ

Xβ) Hby Hyp. 3.2 so that α preserves lubsI

= α(Xλ) Hby def. Xλ.I

There exists ε ∈ O such that α(lfp
≤
λX · I ∨ F (X)) = α(Xε) � X̃ε =

lfp
�
λX ·α(I) � α ◦ F ◦ γ̃(X) so that by the Galois connection Hyp. 3.2, we

conclude that lfp
≤
λX · I ∨ F (X) ≤ γ(lfp

�
λX ·α(I) � α ◦ F ◦ γ̃(X)). ��

By duality, we get:

Theorem 29. Under Hyps. 1.1, 2, 3.1, 4 and 6, we have gfp
≤
λX ·S ∧ F̃ (X)

≥ γ̃(gfp
�
λX · α̃(S) � α̃ ◦ F̃ ◦ γ(X)).
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Proof. The proof is order-theoretic dual of that of Th. 28 where I is S, F is F̃ ,
the rôles of 〈α, γ〉 and 〈α̃, γ̃〉 are exchanged so that Hyp. 6 is self-dual. ��
We obtain Alg. 9 below which operates only on the abstract domain:

Algorithm 9
X := α(I); Y := α̃(S); Go := (X � Y );
while Go do

X ′ := α(I) � α ◦ F ◦ γ̃(X); Y ′ := α̃(S) � α̃ ◦ F̃ ◦ γ(Y );
Go := (X �= X ′) & (Y �= Y ′) & (X ′ � Y ′);
X := X ′; Y := Y ′;

od;
return if X � Y then true else I don’t know;

Theorem 30. Under Hyps. 1.1, 2, 3, 4 & 6, Alg. 9 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. 1. If the loop is never entered then Alg. 9 terminates with X �� Y so the
returned result I don’t know is correct;
Otherwise the loop is entered at least once so that if it is ever exited, we have
X = α(I) � α ◦ F ◦ γ̃(X) | Y = α̃(S) � α̃ ◦ F̃ ◦ γ(Y ) | X �� Y .

2. If X �� Y , the returned result I don’t know is correct;
Otherwise X � Y and two cases remain to be considered;

3. if X = α(I) � α ◦ F ◦ γ̃(X) and X � Y then by Th. 28 and monotony, we
have lfp

≤
λX · I ∨ F (X) ≤ γ(lfp

�
λX ·α(I) � α ◦ F ◦ γ̃(X)) ≤ γ(X) ≤ γ(Y )

≤ γ(α̃(S) ≤ S (by Hyp. 6.1), as required;
4. if Y = α̃(S) � α̃ ◦ F̃ ◦ γ(Y ) then by Th. 29 and monotony, we have dually

gfp
≤
λX ·S ∧ F̃ (X) ≥ γ̃(gfp

�
λX · α̃(S) � α̃ ◦ F̃ ◦ γ(X)) ≥ γ̃(Y ) ≥ γ̃(X) ≥

γ̃(α(I)) ≥ I (by Hyp. 6.2), as required. ��

3.12 On Termination

Observe that, due to classical undecidable results for program analysis, if the
abstract fixpoint checking algorithms of Sec. 3 are required to always terminate
(e.g. by choosing a coarse enough abstraction or by enforcing convergence by
widening/narrowing [12]) then there must be some programs for which the al-
gorithm terminates and returns I don’t know. This can be either because the
program is incorrect (i.e. lfp

≤
λX · I ∨ F (X) �≤ S) or because the abstraction is

too imprecise to prove its correctness.

4 Conclusion

The traditional universal model checking Alg. 2 [3, 32] is the dual of the tradi-
tional algorithm for program analysis [7, 10, 12] (with no abstraction i.e. 〈α,γ〉 is
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the identity). Both algorithms are logically equivalent (Th. 4) although, because
of computer resources limitations, one may fail while the other succeeds. We have
introduced a new Alg. 3 combining these Algs. 1 and 2 which parallel version is
logically equivalent (Th. 10) but more time efficient than both algorithms.

When considering infinite-sate systems, model-checking must resort to ab-
straction, which is always the case in program static analysis. Abstract interpre-
tation [7, 10, 12] yields the abstract Alg. 4 and its dual Alg. 5 (with its particular
case Alg. 6 used in universal abstract model checking [19]) which are both sound
(Th. 12, 20 and Col. 23) and logically equivalent. Again their (parallel) combina-
tion in algorithm 7 is possible, sound (Th. 24) and more efficient. Finally Algs.
4, 5, 6 and 7 compute abstract fixpoints but use a concrete specification checking
(e.g. γ(X) ≤ S for Alg. 4) so are hardly usable for program static analysis. In
this last case one must resort to Algs. 8 or 9, or their parallel versions, which
operate only in the abstract.

In model-checking one is deeply interested in partially complete abstractions
which, despite the loss of information inherent to approximate abstract inter-
pretations, always yield an affirmative answer when the specification is correct
and the checking algorithm does terminate. Would soundness be required only,
but not completeness (i.e. including termination, not considered here), abstract
universal model-checking would be nothing more than classical transition system
analysis by abstract interpretation [12] (and existential model checking its mere
dual).

We have characterized these partially complete abstractions and shown for
both Algs. 4 and 5 that any partially complete abstract domain must contain
the exact abstraction of an invariant, as computed by e.g. by Algs. 1 and 2
respectively (Th. 13 and 21 respectively).

In practice, this means that no full automation of the abstraction process is
possible for infinite-state transition systems (but for particular cases of limited
interest such as specific classes of program specifications), since finding or com-
puting the proper abstraction always boils down to making a full correctness
proof. This appears to be a fundamental restriction to this popular approach
[1, 2, 5, 20, 24, 25, 28, 33], and shows that some human assistance is ultimately
necessary as long recognized in the use of abstract interpretation to design pro-
gram static analyzers manually or with interactive computer assistance [29].
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[6] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
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DEA “Sémantique, Preuve et Programmation”, July 1998.

[30] J.H. Morris and B. Wegbreit. Sungoal induction. Communications of the Associ-
ation for Computing Machinary, 20(4):209–222, April 1977.

[31] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[32] J.-P. Queille and J. Sifakis. Verification of concurrent systems in Cesar. In

Proceedings of the International Symposium on Programming, Lecture Notes in
Computer Science 137, pages 337–351. Springer-Verlag, Berlin, Germany, 1982.
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Abstract. Reinforcement learning addresses the problem of learning op-
timal policies for sequential decision-making problems involving stochas-
tic operators and numerical reward functions rather than the more tradi-
tional deterministic operators and logical goal predicates. In many ways,
reinforcement learning research is recapitulating the development of clas-
sical research in planning and problem solving. After studying the prob-
lem of solving “flat” problem spaces, researchers have recently turned
their attention to hierarchical methods that incorporate subroutines and
state abstractions. This paper gives an overview of the MAXQ value
function decomposition and its support for state abstraction and action
abstraction.

1 Introduction

Reinforcement learning studies the problem of a learning agent that interacts
with an unknown, stochastic, but fully-observable environment. This problem
can be formalized as a Markov decision process (MDP), and reinforcement learn-
ing research has developed several new algorithms for the approximate solution
of large MDPs (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). These al-
gorithms treat the state space of the MDP as a single “flat” search space. This
is appropriate in many domains, such as game playing (Tesauro, 1995), elevator
control (Crites & Barto, 1995), and job-shop scheduling (Zhang & Dietterich,
1995), where reinforcement learning methods have been successfully applied. But
this approach does not scale to tasks such as robot soccer or air traffic control
that have a complex, hierarchical structure. If reinforcement learning is to scale
up to be part of a theory of human-level intelligence, we must find ways to make
it hierarchical by introducing mechanisms for abstraction and sharing.

This paper describes an initial effort in this direction. We will present a
method for incorporating hierarchical state and procedural abstractions into re-
inforcement learning systems. This method is analogous to the introduction of
subroutines or parameterized macros in traditional planning and learning sys-
tems, and many of the same issues arise. But the need to address the stochastic
nature of Markov decision processes (and the possibility of receiving rewards or
penalties in every state) creates interesting new issues as well.
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The paper begins (in Section 2) with an introduction to Markov decision
processes and a toy problem that will serve as the running example for the pa-
per. It introduces the fundamental knowledge structure of most reinforcement
learning algorithms—the value function. The most fundamental reinforcement
learning algorithm, Q learning, is introduced as well. Section 3 then introduces
the problem of learning a recursively optimal policy for a programmer-supplied
hierarchy of tasks and subtasks. A simple extension to Q learning, the Hierar-
chical Semi-Markov Q (HSMQ) learning algorithm is introduced and shown to
converge to a recursively optimal policy. A drawback of HSMQ learning is that it
does not provide a representational decomposition of the value function, which,
among other consequences, means that it learns slowly. Section 4 introduces the
MAXQ value function decomposition and its corresponding learning algorithm,
MAXQ Q learning. Section 5 introduces three forms of state abstraction that
can be employed in hierarchical reinforcement learning. One form can be applied
to both HSMQ and MAXQ, but the other two forms depend upon the MAXQ
value function decomposition. Experimental results are presented showing that
with state abstractions, MAXQ Q learning is much more efficient than either flat
Q learning or HSMQ learning. Section 6 discusses two tradeoffs in the design
of hierarchical reinforcement learning. The first concerns the tradeoff between
optimality and state abstraction, and the second concerns the tradeoff between
model-based methods and state abstraction. The paper concludes with a brief
discussion of omitted topics and open problems.

2 Markov Decision Processes and the Q Learning
Algorithm

A Markov decision process models the situation in which an agent interacts
with an external, fully-observable environment. At each time step, the agent
observes the state of the environment, selects an action, performs the action,
and receives a real-valued reward. The action causes the environment to make
a state transition, which may be deterministic or probabilistic. The real-valued
reward depends on the state of the environment, the action, and the resulting
state of the environment after the action. The goal of the agent is to choose
actions in such a way as to maximize the total reward that it receives until it
enters a terminal state. (This kind of MDP is formally known as an undiscounted
finite horizon MDP.)

Consider the example shown in Figure 1. This is a simple grid world that
contains a taxi, a passenger, and four specially-designated locations labeled R,
G, B, and Y. In the starting state, the taxi is in a randomly-chosen cell of the
grid, and the passenger is at one of the four special locations. The passenger
has a desired destination that he/she wishes to reach, and the job of the taxi is
to go to the passenger, pick him/her up, go to the passenger’s destination, and
drop the passenger off. The taxi has six primitive actions available to it: move
one square north, move one square south, move one square east, or move one
square west, pickup the passenger, and putdown the passenger. For the moment,
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Fig. 1. The Taxi Problem: A simple Markov decision problem.

we will assume that these actions are deterministic, but we will allow them to
be stochastic later.

The taxi agent receives rewards as follows. Each action receives a reward of
−1. When the passenger is putdown at his/her destination, the agent receives a
reward of +20. If the taxi attempts to pickup a non-existent passenger or putdown
the passenger anywhere except one of the four special spots, it receives a reward
of −10. Running into walls has no effect (but entails the usual reward of −1).

A rule for choosing actions is called a policy. Formally, it is a mapping π from
the set of states S to the set of actions A. If an agent follows a fixed policy, then
over many trials, it will receive an average total reward which is known as the
value of the policy. In addition to computing the value of a policy averaged over
all trials, we can also compute the value of a policy when it is executed starting
in a particular state s. This is denoted V π(s), and it is the expected cumulative
reward of executing policy π starting in state s. We can write it as

V π(s) = E [rt+1 + rt+2 + · · ·| st = s, π] .

where rt is the reward received at time t, st is the state of the environment at
time t, and the expectation is taken over the stochastic results of actions in the
environment.

For any MDP, there exist one or more optimal policies, which we will denote
by π∗ that maximize the expected value of the policy. All of these optimal policies
share the same optimal value function, which is written V ∗. The optimal value
function satisfies the Bellman equation:

V ∗(s) = max
a

∑
s′

P (s′|s, a)[R(s′|s, a) + V ∗(s′)],

where a denotes an action to be performed in state s, s′ denotes the result-
ing state (which is reached according to the transition probability P (s′|s, a)),
R(s′|s, a) denotes the expected one-step reward of performing action a in state
s and moving to state s′, and V ∗(s′) is the value of the resulting state. The sum
on the right-hand-side is the expected value of the one step reward R(s′|s, a)
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plus the value of the next state s′, so we can think of it as the backed-up value
of a one-step lookahead search, and the maxa is choosing the action with the
best backed-up value.

Indeed, the sum is so important that it is given a special name, Q∗(s, a):

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s′|s, a) + V ∗(s′)].

This is the expected total reward that will be received when the agent per-
forms action a in state s and then behaves optimally thereafter. By substituting
this into the Bellman equation, we can see that the value function is just the
maximum (over all actions) of the Q function:

V ∗(s) = max
a

Q∗(s, a).

Consequently, we can substitute this into the Q equation to obtain the Q version
of the Bellman equation:

Q∗(s, a) =
∑
s′

P (s′|s, a)
[
R(s′|s, a) + max

a′
Q∗(s′, a′)

]
.
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Fig. 2. Value function for the case where the passenger is at (0,0) (location Y)
and wishes to get to (3,0) (location B).

Figure 2 shows the optimal value function for the taxi problem in the case
where the passenger is at location Y and wishes to move to location B. To
understand this figure, consider the maze on the right, and look at cell (3,1),
which has the value 18. This cell corresponds to the case where the passenger is
in the taxi and the taxi is at this location. If the taxi performs a south action
followed by a putdown action, the passenger will arrive at his/her destination,
and a reward of +20 will be received. However, each of the two actions costs
−1, so the value of being in this state is 20− 2 = 18. Similarly, consider the cell
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(2,2) in the maze on the left, which contains the value 7. This corresponds to the
situation where the passenger is waiting for the taxi at location (0,0), and the
taxi is at (2,2). The taxi must move 4 squares (west, west, south, south), then
issue a pickup. At this point, we can think of the taxi as “jumping” to the maze
on the right, because now the passenger is in the taxi. Seven more moves plus
a putdown are required to deliver the passenger to location G. Hence, this is a
total of 13 actions (total reward −13) to deliver the passenger (reward +20), for
a net value of 7

The problem of probabilistic planning is to compute the optimal policy π∗

given complete knowledge of the MDP (i.e., the transition function P (s′|s, a) and
the reward function R(s′|s, a)). Several offline dynamic programming algorithms
can perform this computation for state spaces on the order of 30,000 states. These
algorithms require time that scales as the cube of the number of states. The most
popular algorithm is value iteration, and it works by iteratively computing the
optimal value function V ∗. Given V ∗, the optimal policy can be computed by
performing a one-step lookahead search to compute Q∗(s, a) and then choosing
the action a that maximizes this:

π∗(s) = argmax
a

Q∗(s, a).

The problem of reinforcement learning is to compute the optimal policy given
no prior knowledge about the MDP but given instead the ability to interact on-
line with the MDP. By interacting with the MDP, the reinforcement learning
agent can observe state s, try action a, and observe the resulting state s′ and
the reward r. From this information (accumulated over many interactions), it
can form an estimate of the probability transition function (P̂ (s′|s, a)) and of
the expected one-step reward function (R̂(s′|s, a)). Hence, one approach to re-
inforcement learning is simply to interact with the environment, estimate this
information, and then apply offline dynamic programming algorithms.

But an alternative is to construct an estimate of V ∗ or Q∗ directly, without
learning P̂ and R̂ first. The Q-learning algorithm discovered by Watkins does
this as follows. Let Qt(s, a) be our current estimate (at time t) of the optimal Q
function. At each time step t, the agent observes the state s of the environment,
chooses action a according to some exploration policy πx, observes the resulting
state s′ and the one-step reward r, and performs the following update:

Qt+1(s, a) := (1− α)Qt(s, a) + α
[
r + max

a′
Qt(s′, a′)

]
.

The parameter α is a learning rate (typically between 0 and 1). The expression
on the right-hand-side computes a moving average between the previous value
of Q(s, a) and a new “estimated value” resulting from the current experience.
If α is gradually decreased according to certain standard conditions, and if πx

ensures that every action is executed infinitely often in every state, then with
probability 1, Qt converges to Q∗.

It is important to note that the action a can be very simple or very complex,
and this algorithm will still work. Indeed, action a can be a call to a subroutine
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that takes many primitive actions and then exits. When that subroutine exits,
it will leave the environment in some new state s′. If we define r to be the
total reward that was received while the subroutine a was being executed, then
the Bellman equation is still satisfied, and Q learning will still converge to Q∗.
Technically, this variant of Q learning is called semi-Markov Q learning (or
SMDP Q learning), because an MDP in which actions can take multiple time
steps is known as a semi-Markov decision problem. In the undiscounted finite
horizon case that we are considering, SMDP Q learning is identical to standard Q
learning, but in other situations, the algorithm must be modified slightly (Parr,
1998).

3 Task Decompositions and Reinforcement Learning

The aim of hierarchical reinforcement learning is to discover and exploit hierar-
chical structure within a Markov decision problem. In this paper, we will side-
step the problem of discovering hierarchical structure and focus on the problem
of exploiting a programmer-provided task hierarchy. The programmer must de-
fine a hierarchy of subroutines, but it is the reinforcement learning system that
will “write the code” for each subroutine—that is, the reinforcement learning
system will find a policy for choosing actions within each subroutine. When the
learning has finished, the policy for each subroutine will be an optimal solution
to a sub-MDP of the original MDP, and the policy of the overall MDP will be a
combination of the policies of the various subroutines. An important benefit of
this approach is that these sub-MDPs (and their learned optimal policies) will
be re-usable in new tasks.

Given an MDP, we will rely on a programmer to design a task hierarchy. For
example, Figure 3 shows a task hierarchy for the Taxi problem. This decomposes
the overall task (root) into two subtasks: get the passenger (move the taxi to the
passenger’s location and pick up the passenger), and put the passenger (move
the taxi to the passenger’s destination and put down the passenger). Each of
these is decomposed in turn. get decomposes into navigate(source) and the prim-
itive pickup, while put decomposes into navigate(destination) and the primitive
putdown. Finally, the parameterized subroutine navigate(t) decomposes into the
four motion primitives north, south, east, and west.

To define each subtask, the programmer must specify a termination predicate
and a set of child tasks. For example, the subtask for navigate(t) is terminated
if and only if (iff) the taxi is at location t, the subtask for get is terminated iff
the taxi contains the passenger, and the subtask for put is terminated iff the
passenger is at his/her destination.

With this information, we can define the goal of our hierarchical reinforce-
ment learning algorithm to be finding a recursively optimal policy. A recursively
optimal policy is an assignment of policies to each individual subtask such that
the policy for each subtask is optimal given the policies assigned to all of its
descendants. A recursively optimal policy is a kind of local optimality. It does
not guarantee anything about the quality of the resulting overall policy, but it
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Fig. 3. A task hierarchy for the Taxi domain.

does ensure that each policy is locally the optimal solution to an MDP defined
by the subtask and the policies of all of its descendants.

To learn such policies, we can apply Semi-Markov Q learning simultaneously
to each task within the task hierarchy, an algorithm which we will refer to as
Hierarchical Semi-Markov Q Learning (or HSMQ). Each subtask p will learn
its own Q function Q(p, s, a) which is the expected total reward of performing
subtask p starting in state s, executing action a and then following the optimal
policy thereafter. Specifically, each subtask performs the following:

function HSMQ(state s, subtask p) returns float
Let TotalReward = 0
while p is not terminated do

Choose action a = πx(s) according to exploration policy πx

Execute a.
if a is primitive, Observe one-step reward r
else r := HSMQ(s, a), which invokes subroutine a and

returns the total reward received while a executed.
TotalReward := TotalReward + r
Observe resulting state s′

Update Q(p, s, a) := (1− α)Q(p, s, a) + α
[
r + max

a′
Q(p, s′, a′)

]
end // while
return TotalReward

end

By an argument similar to Dietterich (2000), it can be proved that this algo-
rithm will converge to a recursively optimal policy for the original MDP provided
that the learning rates α decrease according to certain technical requirements
and that the exploration policies πx (i) execute every action a infinitely often in
every state s that is visited infinitely often and (ii) in the limit of infinite explo-
ration they become greedy with respect to Q(p, s, a). Such exploration policies
are said to be Greedy in the Limit of Infinite Exploration or GLIE (Singh,
Jaakkola, Littman, & Szepesvári, 1998).



An Overview of MAXQ Hierarchical Reinforcement Learning 33

The reason that the exploration policies must be GLIE is the following. Con-
sider a subtask whose actions are themselves subroutines. The Q learning algo-
rithm relies on executing an action a and getting accurate samples of its expected
one-step reward R(s′|s, a) and its result state probabilities P (s′|s, a). If a sub-
routine a continues executing a non-greedy exploration policy πx forever, then
the samples of its behavior obtained by the parent subtask will be samples of
the behavior of this exploration policy rather than samples of the behavior of
the locally optimal policy learned for subtask a.

By a similar line of thought, one might expect that simultaneous learning at
all levels of the hierarchy would be pointless. That each higher level should wait
until its children have converged to a fixed policy. But in practice, useful learning
can take place in a parent task before its children have completely converged.
And the resulting HSMQ algorithm is a fully-online incremental algorithm.

4 Value Function Decomposition and Reinforcement
Learning

The HMSQ learning algorithm treats the hierarchical reinforcement learning
problem as a collection of simultaneous, independent Q learning problems. Al-
though it provides a procedural decomposition of the learned policy into policies
for each subtask, it does not provide a representational decomposition of the
value function: The value function of each subtask is represented and learned
independently. We would like to obtain some sharing (and compactness) in the
representation of the value function.

Consider, for example, the value function shown in Figure 4 and compare it
to the value function in Figure 2. These are the value functions that would be
represented and learned by the root task. Although the value functions of the two
right-side mazes (where the passenger is in the taxi) differ, the value functions
of the left-side mazes are identical except for an offset of 3. The reason is that
both of these left-hand side mazes are really reflecting the same subgoal—that
of moving the taxi to location (0,0) and picking up the passenger. They differ
in what happens after the passenger is picked up. In the case of Figure 2, the
passenger’s destination is 7 steps away, whereas in Figure 4, the destination is
only 4 steps away. The difference 7− 4 = 3 accounts for the difference between
the left-side value functions. We would like to exploit this regularity to represent
the left-side value function only once.

The MAXQ value function decomposition is a way of achieving this. The
idea is to decompose the Q(p, s, a) value into the sum of two components. The
first component is the expected total reward received while executing action a,
and the second component is the expected total reward of completing parent
task p after a has returned. Clearly, the total expected reward of performing
action a and then following the optimal policy thereafter is the sum of these
two components. The key observation is that the first component is exactly the
value function for the subtask a, which we will denote by V (a, s). We will call the
second component the completion function, and we will denote it by C(p, s, a).
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Fig. 4. Value function for the case where the passenger is at (0,0) (location Y)
and wishes to get to (0,4) (location R).

This allows us to write

Q(p, s, a) = V (a, s) + C(p, s, a).

This equation shows how we can relate the Q value of a parent task to
the value function of a child task. Applied recursively, it shows how we can
decompose the Q function of the root task into a sum of Q values for all of its
descendant tasks:

V (p, s) = max
a

[V (a, s) + C(p, s, a)]

We can terminate this recursion by defining V (a, s) for primitive actions to be
the expected one-step reward of performing action a in state s:

V (a, s) =
∑
s′

P (s′|s, a)R(s′|s, a).

In the MAXQ decomposition, we can think of each non-primitive subtask p
as storing C(p, s, a) for each non-terminated state s and each child action a. The
primitive actions store V (a, s). As an example, consider again the situation in
Figure 2 where the taxi is at location (2,2) and the passenger is at location Y
(0,0) and wishes to get to location B (3,0). Figure 5 shows how the value of 7
for this state is decomposed into a sum of completion costs. The tree on the left
side of the figure shows the values in English, and the tree on the right shows
the same values using our formal notation. Each node in the tree computes the
sum of its two children.

The value of 7 at the root is the sum of the reward of performing the get,
which is −5, plus the reward of completing the root task, which is 12. The −5
of the get task is the sum of the reward for moving the taxi to location Y (i.e.,
of performing navigate(Y )), which is −4, and the reward for completing the get
afterwards, which is −1. Finally, the value −4 of the navigate(Y ) is the sum of
the reward for performing one west action (−1) and the reward for completing
the navigate, which is −3. Formally, we write this as
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Fig. 5. An example of the MAXQ value function decomposition for the state in
which the taxi is at location (2,2), the passenger is at (0,0), and wishes to get
to (3,0). The left tree gives English descriptions, and the right tree uses formal
notation.

V (root, s) = V (west, s) + C(navigate(Y ), s, west)
+ C(get, s, navigate(Y ))
+ C(root, s, get).

Dietterich (2000) proves that the MAXQ value function decomposition can
represent the value function of any hierarchical policy (i.e., any assignment of
policies to subtasks in a hierarchy), not just recursively optimal policies. This
result extends to discounted, infinite-horizon MDPs and stochastic policies.

It is just as easy to learn using the MAXQ value function decomposition as it
was to learn using the un-decomposed value functions and the HSMQ algorithm.
We call the resulting algorithm MAXQQ learning:

function MAXQQ(state s, subtask p) returns float
Let TotalReward = 0
while p is not terminated do

Choose action a = πx(s) according to exploration policy πx

Execute a.
if a is primitive, Observe one-step reward r
else r := MAXQQ(s, a), which invokes subroutine a and

returns the total reward received while a executed.
TotalReward := TotalReward + r
Observe resulting state s′

if a is a primitive
V (a, s) := (1− α)V (a, s) + αr



36 Thomas G. Dietterich

else a is a subroutine
C(p, a, s) := (1− α)C(p, s, a) + αmaxa′ [V (a′, s′) + C(p, s′, a′)]

end // while
return TotalReward

end

Under the same conditions as HSMQ, MAXQQ converges with probability 1
to a recursively optimal policy.

5 State Abstraction and Hierarchical Reinforcement
Learning

In many subtasks, the value function does not depend on all of the state variables
in the original MDP. For example, in the navigate(t) subtask, the value function
only depends on the location of the taxi and the location of the target cell t; the
location of the passenger and the destination of the passenger are irrelevant. We
would like to exploit state abstraction within subtasks in order to reduce the
amount of memory required to store the value function and reduce the amount
of experience required to learn the value function.

There are three fundamental forms of state abstraction that can be applied
within the MAXQ value function decomposition: (a) irrelevant variables, (b)
funnel abstractions, and (c) structural constraints. We will see that the first of
these can be applied even within the HSMQ learning algorithm, but that the
second and third forms require the MAXQ value function decomposition.

A state variable is irrelevant for a subtask if the value of that state variable
never affects either the values of the relevant state variables or the reward func-
tion. Formally, suppose that the state s is represented by a collection of state
variables (e.g., taxi location, passenger location, passenger destination). Suppose
that we partition these state variables into two subsets X and Y , and denote
a state s as a pair (x, y), where x specifies the values of the state variables in
X , and y specifies the values of the state variables in Y . We will say that state
variables Y are irrelevant for a subtask if, for all non-terminated states (x, y),
the following properties hold:

1. The probability transition function can be factored as
P (x′, y′|x, y, a) = P (x′|x, a)P (y′|x, y, a).

2. The reward function depends only on the variables in X :
R(x′, y′|x, y, a) = R(x′|x, a).

Figure 6 shows a dynamic belief network that captures these constraints.
It is easy to see that under these conditions, although the chosen actions

a within a subtask may affect the values of the Y variables, the Y variables
can have no effect on the rewards received in the subtask, and hence, they are
irrelevant to the value function and can be ignored.

In the taxi domain, this form of abstraction permits us to ignore the pas-
senger location during the navigate and put subtasks and ignore the passenger
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Fig. 6. A dynamic belief network illustrating the definition of irrelevance.

destination during the navigate and get subtasks. Clearly, this form of state ab-
straction can be applied with the HSMQ learning algorithm as well, since it does
not depend on the MAXQ value function decomposition.

The second form of state abstraction is the “funnel” abstraction. A funnel
action is an action that causes a larger number of initial states to be mapped
into a small number of resulting states. For example, the navigate(t) action maps
any state into a state where the taxi is at location t. The key thing to note is that
the completion cost of an action, C(p, s, a), only depends on the distribution of
possible states s′ that can result from performing action a. Specifically, we can
write C(p, s, a) as

C(p, s, a) =
∑
s′

P (s′|s, a)V (p, s′).

For the navigate(t) action, the result state s′ will have the same passenger lo-
cation and destination as the initial state s, but the taxi will now be located
at t. This means that the completion cost is independent of the location of the
taxi—it is the same for all initial locations of the taxi. This is evident in Fig-
ure 2, where the completion function for moving to location Y and picking up
the passenger is 12 regardless of the starting location of the taxi.

In the Taxi task, funnel abstractions can be applied as follows. The comple-
tion costs C(get, s, navigate(t)) and C(put, s, navigate(t)) are independent of the
taxi location. Similarly, the completion cost C(root, s, get) is independent of the
taxi location.

The third form of state abstraction results from constraints introduced by the
structure of the hierarchy. For example, if a subtask is terminated in a state s,
then there is no need to represent its completion cost in that state. For example,
there is no need to represent C(root, s, put) in states where the passenger is not
in the taxi, because the put is terminated in such states.

Another structural constraint concerns implication relationships between a
child task and its parent task. In some states, the termination predicate of the
child task implies the termination predicate of the parent task. In such states,
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the completion cost must be zero. For example, C(root, s, put) is always zero
in cases where the put is not terminated, because after the put is completed,
the passenger will be at his/her destination, and therefore, the root task will be
terminated as well.

The MAXQ decomposition is essential for the success of the funnel and struc-
tural abstractions. It is only because the Q value is decomposed into the com-
pletion function and the child value function that we can take advantage of state
abstractions that affect only the completion function.

With state abstractions, it is possible to dramatically reduce the amount of
memory required to exactly represent the Q function. In the taxi task, for exam-
ple, flat Q learning requires storing 3,000 Q values. Without state abstractions,
the HSMQ learning approach requires 14,000 distinct Q values. But with state
abstraction and the MAXQ hierarchy, we only need to store a total of 632 values
for C and V .

Interestingly, with the MAXQ decomposition, we can represent the value
function for the taxi task as a sum of components such that each component
only depends on a subset of the state variables. For example, in the start state,
the value function usually decomposes as

V (root, s) = V (navigate(t), s) + C(get, s, navigate(t)) + C(root, s, get),

where V (navigate(t), s) depends only on taxi location and t, C(get, s, navigate(t))
depends only on the passenger’s starting location, and C(root, s, get) depends
only on passenger’s starting location and destination. No value depends on the
entire state space.

State abstraction also means that learning is faster, because learning expe-
riences in distinct complete states become multiple learning experiences in the
same abstracted state. Consequently, the amount of “training data” for a partic-
ular C(p, s, a) value increases, and that value can be determined more rapidly.
For example, the taxi can learn how to get to location Y both when it is going to
get the passenger who is waiting there and when it is going to put the passenger
who is trying to get there.

Figure 7 shows an experimental verification of this for a version of the taxi
task in which the four motion actions are stochastic. With probability 0.8, each
motion action succeeds, but with probability 0.2, the taxi instead moves in a
direction perpendicular to the desired direction. For example, when executing a
north action, with probability 0.8 the taxi moves north, but with probability 0.1
it moves east, and with probability 0.1 it moves west. In addition, the passenger
is somewhat fickle. After the taxi has picked up the passenger and moved one
step away from the passenger’s original location, the passenger changes his/her
destination location with probability 0.3.

The graph compares the online performance (in terms of cumulative reward
per trial) of flat Q learning, MAXQQ learning with no state abstractions, and
MAXQQ learning with state abstractions. We can see that without state ab-
stractions, MAXQQ learning is reasonably successful, although it takes some-
what longer than flat Q learning to finally converge. But with state abstractions,
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MAXQQ converges to a near-optimal policy more than twice as fast as flat Q
learning.
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Fig. 7. Comparison of Flat Q learning, MAXQ Q learning with no state abstrac-
tion, and MAXQ Q learning with state abstraction on a noisy version of the taxi
task.

The MAXQ value function decomposition builds upon previous work by
Singh (1992), Kaelbling (1993), and Dayan and Hinton (1993). Singh and Kael-
bling were the first researchers to seek a decomposition of the value function as
well as a decomposition of the policy. Kaelbling developed the HDG method,
which was suitable only for a special kind of navigation task. We have replicated
her work using the MAXQ value function decomposition, and the resulting learn-
ing curves are shown in Figure 8. In this domain, we see that MAXQQ without
state abstractions performs much worse than simple flat Q learning, but with
state abstractions, MAXQ Q learning is approximately four times more efficient.
This experiment shows even more clearly than the taxi domain how important
state abstractions are for hierarchical reinforcement learning.
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Fig. 8. Comparison of Flat Q learning, MAXQ Q learning with no state ab-
straction, and MAXQ Q learning with state abstraction on a noise-free version
of Kaelbling’s navigation task.

6 Design Tradeoffs in Hierarchical Reinforcement
Learning

In both HSMQ learning and MAXQQ learning, we have focused on learning a
recursively optimal policy. However, a recursively optimal policy can be very
far from being optimal. Other authors, notably Parr and Russell (1998) and
Dean and Lin (1995), have developed algorithms for learning hierarchically op-
timal policies—that is, policies that are the best possible given the constraints
of an imposed hierarchy. In such policies, it is often the case that the policy
for a subroutine is not optimal given the policies of its children. Consequently,
hierarchically optimal policies are not necessarily recursively optimal, and vice
versa.

In order to learn a hierarchically optimal policy, it is essential that infor-
mation from “outside” of a subtask be able to propagate “into” the subtask.
Consider the simple two-room maze problem shown in Figure 9. Suppose that
there are two defined subtasks: exit from the room on the left (which terminates
when the agent leaves the room by either door), and go to the goal in the room
on the right. The recursively optimal policy for the left room is to leave by the
nearest door. But this is not the hierarchically optimal policy for the shaded
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squares. For these squares, it is better to move upward and exit by the upper
door. To discover this hierarchically optimal policy, information about the dis-
tance to the goal after the agent leaves the room must be propagated “into” the
room (as it would be in flat Q learning, for example).

G

Fig. 9. A simple two-room maze problem. An agent starting in the left room
must reach the goal G in the right room in the fewest number of steps. Ar-
rows show a policy for exiting the left room in the fewest number of steps. The
hierarchically optimal policy goes north in the shaded region instead of south.

It would be easy to modify MAXQQ learning to permit this. The basic idea
would be to treat the completion function Q(p, s, a) as a “terminal state” reward
for action a, which would then influence the value function inside subtask a.

Although this would permit MAXQQ learning to discover a hierarchically
optimal policy, it would also destroy many opportunities for state abstraction.
Consider what happens if the goal location (in the right room) is a state variable
that can change. Then the choice of hierarchically optimal policy inside the left
room will depend on the location of the goal in the right room. If the goal
moves to the bottom of the right room, then the optimal policy for the shaded
squares is to move down. This means that the value function for the left room
subtask depends on an additional state variable—the current location of the goal.
However, if we are willing to settle for recursive optimality, we can abstract away
this state variable.

From this argument, we can see that there is a tradeoff between state ab-
straction and quality of the resulting policy. Recursive optimality permits more
state abstraction and more re-use of subtasks than does hierarchical optimality.
But hierarchical optimality is generally better than recursive optimality.
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There is another design question that we will discuss briefly. The learning
algorithms presented in this paper are all model-free Q learning algorithms. Q
learning is one of the most widely-applicable algorithms in reinforcement learn-
ing, but it is also one of the least efficient, particularly when measured in terms
of the number of actions that the agent must execute in the environment. Model-
based algorithms (that is, algorithms that try to learn P (s′|s, a) and R(s′|s, a))
are generally much more efficient, because they remember past experience rather
than having to re-experience it.

One of the best model-based algorithms is Prioritized Sweeping (Moore
& Atkeson, 1993). Prioritized sweeping maintains estimates of P (s′|s, a) and
R(s′|s, a)—typically by remembering all 〈s, a, r, s′〉 tuples of experience. After
each action in the real world, prioritized sweeping performs a fixed number of
dynamic programming steps to update the Q values of those state-action pairs
whose Q values are believed to be most inaccurate. Experimental tests show that
prioritized sweeping can be dramatically more efficient than Q learning.

We have implemented a prioritized sweeping algorithm for the MAXQ hier-
archy. The algorithm learns a model for each subtask within the MAXQ task
hierarchy. Unfortunately, the model for subtask p must remember the values of
all state variables that are relevant to subtask p or to any of its descendants.
This is necessary, because in order to perform dynamic programming steps, pri-
oritized sweeping needs to evaluate V (p, s), the value function for subtask p.
This in turn requires that it evaluate C(p, s, a) for all children a of p (and their
children, recursively). As a consequence, while the completion function for sub-
task p may only depend on some set of state variables X , the learned probability
transition model P (s′|s, a) for subtask p must depend on all of the state variables
relevant to p or any descendant of p. This significantly reduces the effectiveness
of state abstractions, at least for purposes of learning transition models.

One conclusion to be drawn from this discussion is that Q learning and the
MAXQ hierarchy are well-suited to one another. Because Q learning only needs
samples of the probability transitions and rewards, it works well with the MAXQ
hierarchy, which only needs to represent the completion function of each subtask,
rather than the full value function of the subtask.

7 Conclusions

This paper has attempted to provide an overview of the MAXQ value function
decomposition including its representational capabilities, learning algorithms,
support for state abstractions, and design tradeoffs. The experiments show that
hierarchical reinforcement learning can be much faster (and more compact) than
flat reinforcement learning. Recursively optimal policies can be decomposed into
recursively optimal policies for individual subtasks, and these subtask policies
can be re-used whereever the same subtask arises.

We have omitted two important topics in this paper. The first is the ques-
tion of whether programmers will be able to design good MAXQ task hierarchies.
Elsewhere (Dietterich, 2000), we have shown how the MAXQ formalism can be
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extended to permit the programmer to specify separate “pseudo-reward func-
tions” for each subtask. This permits the programmer to express such things as
“leaving the room by the top door is better than leaving by the bottom door”.
Even with this additional expressive power, we have found that the proper def-
inition of the termination predicates for each subtask can be difficult and often
requires observing the behavior of MAXQ Q learning and debugging the termi-
nation predicates to improve that behavior.

The second topic concerns how to recover from the suboptimal performance
resulting from the task hierarchy. Neither recursively optimal nor hierarchically
optimal policies are necessarily close to globally optimal. Fortunately, several
methods have been developed for reducing the degree of suboptimality. The most
interesting of these involves using the hierarchical value function to construct a
non-hierarchical policy that is provably better than the hierarchical policy. See
Dietterich (2000), Kaelbling (1993), and Sutton, Precup, and Singh (1998) for
more details.

As we stated in the introduction, the goal of hierarchical reinforcement learn-
ing is to discover and exploit hierarchical structure within complex Markov deci-
sion problems. This paper has focused on exploiting programmer-specified hierar-
chical structure. The biggest open problem in hierarchical reinforcement learning
is to discover hierarchical structure. One definition of a good hierarchy is that it
would permit the three forms of state abstraction that we have discussed in this
paper. We hope that the formalization of these abstractions (and others yet to
be identified) will help guide the search for good abstractions.
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Abstract. In the past several years, significant progress has been made
in finding optimal solutions to combinatorial problems. In particular, ran-
dom instances of both Rubik’s Cube, with over 1019 states, and the 5×5
sliding-tile puzzle, with almost 1025 states, have been solved optimally.
This progress is not the result of better search algorithms, but more effec-
tive heuristic evaluation functions. In addition, we have learned how to
accurately predict the running time of admissible heuristic search algo-
rithms, as a function of the solution depth and the heuristic evaluation
function. One corollary of this analysis is that an admissible heuristic
function reduces the effective depth of search, rather than the effective
branching factor.

1 Introduction

The Fifteen Puzzle consists of fifteen numbered square tiles in a 4×4 square grid,
with one position empty or blank. Any tile horizontally or vertically adjacent
to the blank can be moved into the blank position. The task is to rearrange the
tiles from some random initial configuration into a desired goal configuration,
ideally or optimally using the fewest moves possible.

The Fifteen Puzzle was invented by Sam Loyd in the 1870s [10], and appeared
in the scientific literature shortly thereafter [5]. The editor of the journal added
the following comment to the paper: “The ‘15’ puzzle for the last few weeks has
been prominently before the American public, and may safely be said to have
engaged the attention of nine out of ten persons of both sexes and of all ages
and conditions of the community.”

One reason for the world-wide Fifteen Puzzle craze was that Loyd offered a
$1000 cash prize to transform a particular initial state to a particular goal state.
Johnson and Story proved that it wasn’t possible, that the entire state space was
divided into even and odd permutations, and that there is no way to transform
one into the other by legal moves.

Rubik’s Cube was invented in 1974 by Erno Rubik of Hungary, and like the
Fifteen Puzzle a hundred years earlier, became a world-wide sensation. More
� Copyright c© 2000, American Association for Artificial Intelligence (www.aaai.org).
All rights reserved.
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than 100 million Rubik’s Cubes have been sold, and it is the best-known com-
binatorial puzzle of all time.

In the remainder of this paper, we’ll use these example problems to illustrate
recent progress in heuristic search. In particular, the design of more accurate
heuristic evaluation functions has allowed us to find optimal solutions to random
instances of both the 5× 5 Twenty-Four puzzle, and Rubik’s Cube for the first
time. In addition, we’ll present a theory that allows us to accurately predict the
running time of admissible heuristic search algorithms from the solution depth
and the heuristic evaluation function. One consequence of this theory is that an
admissible heuristic function decreases the effective depth of search, relative to
a brute-force search, rather than the effective branching factor.

2 Search Algorithms

The 3× 3 Eight puzzle contains only 181,440 reachable states, and hence can be
solved optimally by a brute-force breadth-first search in a fraction of a second.

To solve the 4× 4 Fifteen Puzzle however, with about 1013 states, we need a
heuristic search algorithm, such as A* [4]. A* is a best-first search in which the
cost of a node n is computed as f(n) = g(n) + h(n), where g(n) is the length of
the current path from the start to node n, and h(n) is a heuristic estimate of the
length of a shortest path from node n to a goal. If h(n) is admissible, meaning
it never overestimates the distance to a goal, A* is guaranteed to find a shortest
solution, if one exists.

The classic heuristic function for the sliding-tile puzzles is Manhattan dis-
tance. It is computed by taking each tile, counting the number of grid units
between its current location and its goal location, and summing these values for
all tiles. Manhattan distance is a lower bound on actual solution length, because
every tile must move at least its Manhattan distance, and each move only moves
one tile.

Unfortunately, A* can’t solve the Fifteen Puzzle, because it stores every node
it generates, and exhausts the available memory on most problems before finding
a solution. Iterative-Deepening-A* (IDA*) [6] is a linear-space version of A*. It
performs a series of depth-first searches, pruning a path and backtracking when
the cost f(n) = g(n)+h(n) of a node n on the path exceeds a cutoff threshold for
that iteration. The initial threshold is set to the heuristic estimate of the initial
state, and increases in each iteration to the lowest cost of all the nodes pruned
on the last iteration, until a goal node is expanded. Like A*, IDA* guarantees
an optimal solution if the heuristic function is admissible. Unlike A*, however,
IDA* only requires memory that is linear in the maximum search depth. IDA*,
using the Manhattan distance heuristic, was the first algorithm to find optimal
solutions to random instances of the Fifteen Puzzle [6]. An average of about 400
million nodes are generated per problem instance, requiring about 6 hours of
running time on a DEC KL10 in 1984.
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3 Design of Heuristic Functions

3.1 Classical Explanation

The standard explanation for the origin of heuristic functions is that they com-
pute the cost of exact solutions to a simplified version of the original problem
[11]. For example, in the sliding-tile puzzles, if we ignore the constraint that we
can only move a tile into the empty position, we get a new problem where any
tile can be moved to any adjacent position, and multiple tiles can occupy the
same position. In this simplified problem, we can solve any instance by taking
each tile one at a time, and moving it along a shortest path to its goal position,
counting the number of moves made. The cost of an optimal solution to this
simplified problem is just the Manhattan distance of the original problem. Since
we simplified the problem by removing a constraint on the moves, any solution
to the original problem is also a solution to the simplified problem, and hence
the cost of an optimal solution to the simplified problem is a lower bound on the
cost of an optimal solution to the original problem. Thus, any heuristic derived
in this way is admissible.

What makes it possible to efficiently compute the Manhattan distance is that
in the simplified problem, the individual tiles can move independently of each
another. The reason the original problem is difficult, and why the Manhattan
distance is only a lower bound on actual cost, is that the tiles interact. By
taking into account some of these interactions, we can compute more accurate
admissible heuristic functions.

3.2 Pattern Databases

Pattern databases [1] are one way to do this. Consider any subset of tiles, such as
the seven tiles in the right column and bottom row of the Fifteen Puzzle, which
they called the fringe pattern. The minimum number of moves required to get
the fringe tiles from their initial positions to their goal positions, including any
required moves of other tiles as well, is obviously a lower bound on the minimum
number of moves needed to solve the entire problem.

It would be too expensive to calculate the moves needed to solve the fringe
tiles for each state in the search. This number, however, depends only on the
positions of the fringe tiles and the blank position, but not on the positions of
the other tiles. Since there are only a limited number of such configurations, we
can precompute all of these values, store them in memory in a table, and look
them up as needed during the search. Since there are seven fringe tiles and one
blank, and sixteen different locations, the total number of possible configurations
of these tiles is 16!/(16− 8)! = 518, 918, 400. For each table entry, we can store
the number of moves needed to solve the fringe tiles from their corresponding
locations, which takes only a byte of storage. Thus, we can store the whole table
in less than 495 megabytes of memory.

We can compute this table by a single breadth-first search backward from
the goal state. In this search, the non-pattern tiles are all considered equivalent,
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and a state is uniquely determined by the positions of the pattern tiles and the
blank. As each configuration of these tiles is encountered for the first time, the
number of moves made to reach it is stored in the corresponding entry of the
pattern database. The search continues until all entries of the table are filled.
Note that this table is only computed once for a given goal state, and its cost
can be amortized over the solution of multiple problem instances with the same
goal state.

Once the table is built, we use IDA* to search for an optimal solution to a
problem instance. As each state is generated, the positions of the pattern tiles
and the blank are used to compute an index into the pattern database, and the
corresponding entry, which is the number of moves needed to solve the pattern
tiles, is used as the heuristic value for that state.

Using the fringe pattern database, Culberson and Schaeffer [1] reduced the
number of nodes generated to solve the Fifteen Puzzle by a factor of 346, and
reduced the running time by a factor of 6. Combining this with another pattern
database, and taking the maximum of the two database values as the heuristic
value, reduced the nodes generated by a factor of a thousand, and the running
time by a factor of 12, compared to Manhattan distance.

Rubik’s Cube Pattern databases have also been used to find optimal solu-
tions to Rubik’s Cube [8]. The standard 3× 3× 3 Rubik’s Cube contains about
4.3252×1019 different reachable states. Of the 27 subcubes, or cubies, 20 of them
can be moved. These can be divided into eight corner cubies, with three faces
each, and twelve edge cubies, with two faces each. There are only 88, 179, 840
different configurations of the corner cubies, and the number of moves required
to solve just the corner cubies ranges from zero to eleven. At four bits per entry,
a pattern database for the corner cubies requires about 42 megabytes of memory.
Six of the twelve edge cubies generate 42, 577, 920 different possibilities, and a
corresponding pattern database requires about 20 megabytes of memory. Sim-
ilarly, the remaining six edge cubies generate another pattern database of the
same size.

Given multiple pattern databases, the best way to combine them, without
overestimating the actual solution cost, is to take the maximum of their values,
even if the cubies in the different databases don’t overlap. The reason for this is
that every twist of the cube moves eight different cubies, and hence moves that
contribute to the solution of the cubies in one pattern may also contribute to
the solution of the others. Taking the maximum of the values in all three pattern
databases described above allowed IDA* to find the first optimal solutions to
random instances of Rubik’s Cube [8]. The median optimal solution length is 18
moves. At least one problem instance generated a trillion nodes, and required
a couple weeks to run. With further improvements by Michael Reid, Herbert
Kociemba, and others, most states can now be solved optimally in a day.
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3.3 Disjoint Pattern Databases

The main limitation of Culberson and Schaeffer’s pattern databases is that the
only way to combine the values from different databases without overestimating
actual cost is to take their maximum value. Returning to the Fifteen Puzzle,
even if we compute a separate pattern database for the remaining eight tiles
not in the fringe pattern, the best admissible combination of these two heuristic
values is their maximum. The reason is that Culberson and Schaeffer counted
all moves required to solve the pattern tiles, including moves of tiles not in the
pattern. As a result, moves used to solve tiles in one pattern may also be used
to solve tiles in another pattern.

One way to improve on this is when computing the heuristic value for a
pattern of tiles, only count the moves of the tiles in the pattern. Then, given two
or more patterns that have no tiles in common, we can add together the heuristic
values from the different databases, and still get an admissible heuristic. This
is because in the sliding-tile puzzle, each operator only moves a single tile. We
call such a set of databases a disjoint pattern database, or a disjoint database for
short. Summing the values of different heuristics results in a much larger value
than taking their maximum, and thus greatly reduces the amount of search that
is necessary.

A trivial example of a disjoint pattern database is Manhattan distance. Man-
hattan distance can be viewed as the sum of a set of individual pattern database
values, each representing only a single tile. It could be “discovered” by running
a pattern search for each tile, recording the minimum number of moves required
to get that tile to each location from its goal location.

A non-trivial example of a disjoint database divides the Fifteen Puzzle in half
horizontally, into a group of seven tiles on top, and eight tiles on the bottom,
assuming the goal position of the blank is the upper-left corner. We precompute
the number of moves required to solve the tiles in each of these patterns, from
all possible combinations of positions, but only counting moves of the tiles in
the given pattern. Instead of explicitly representing the blank position in the
database, we store the minimum value for all possible positions of the blank.
The resulting eight-tile pattern database contains 16!/(16− 8)! = 518, 918, 400
entries, each of which requires a byte, or 495 megabytes of memory. The 7-tile
pattern contains only 16!/(16 − 7)! = 57, 657, 600 entries, or 55 megabytes of
storage.

Once these pattern databases are computed and stored, we get another set
of heuristic values by reflecting all the tiles and their positions about the main
diagonal of the puzzle. This gives us a 7-tile pattern on the left side of the puzzle,
and an 8-tile pattern on the right. The values from these two different sets of
databases can only be combined by taking their maximum, since their individual
tiles overlap.

This heuristic can be used to optimally solve random Fifteen Puzzle in-
stances, generating an average of about 37,700 nodes, and taking less than 29
milliseconds per problem instance on a 440 Megahertz Sun Ultra 10 workstation.
This is in comparison to 400 million nodes and about 50 seconds per problem on
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the same machine for simple Manhattan distance. This is a factor of over 10,000
in nodes generated, and over 1700 in actual running time.

3.4 Pairwise Distances

The original pattern database idea allows the most general combination rule,
since the maximum of any set of admissible heuristics is always an admissible
heuristic. Conversely, disjoint pattern databases admit the most powerful combi-
nation rule, by allowing the values from different heuristics to be added together,
but it’s not very general, since it requires each operator to effect only subgoals
within a given pattern. Disjoint databases cannot be used on Rubik’s Cube,
for example, since each twist moves eight different cubies. Between these two
extremes lies a technique that combines the two ideas.

Consider a database that contains the number of moves required to correctly
position every pair of tiles, from every possible pair of positions they could be
in. In most cases, this will be the sum of their Manhattan distances. In some
cases, however, this pairwise distance will exceed the sum of the Manhattan
distances of the two tiles. For example, if two tiles are in the same row, which
is also their goal row, but they are reversed with respect to each other, one
tile will have to move vertically out of the row, to allow the other to pass by,
and then move back into the row. This adds two moves to the sum of their
Manhattan distances, which only reflects the moves within their goal row. This
is the idea behind the “linear conflict” heuristic function [3], the first significant
improvement to Manhattan distance. There are also other situations where the
pairwise distance of two tiles from their goal location exceeds the sum of their
Manhattan distances [7].

The difficulty with the pairwise distance heuristic comes in applying it to
a given state. We can’t simply sum the pairwise distances of all pairs of tiles,
because moves of the same tile may be counted more than once. Rather, we
must partition the tiles into non-overlapping groups of two, and then sum the
pairwise distances of each of the disjoint groups. Ideally, we want to choose a
grouping for each state that maximizes the heuristic value. This is known as
the maximal matching problem, and must be solved for each state in the search.
Thus, heuristics based on pairwise distances are relatively expensive to compute.
The idea of pairwise distances can obviously be generalized to distances of triples
or quadruples of tiles as well.

Twenty-Four Puzzle An admissible heuristic based on linear conflicts and
other pairwise and higher-order distances lead to the first optimal solutions to
random instance of the 5 × 5 Twenty-Four Puzzle [7], containing almost 1025

states. Some of these problems generated trillions of nodes, and required weeks
to run. We have applied disjoint databases to this problem, using patterns of six
tiles, and can optimally solve most problem instances in a day.
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4 Time Complexity of Admissible Heuristic Search

We now turn our attention to the time complexity of admissible heuristic search
algorithms. The central difficulty is that the running time depends on the quality
of the heuristic function, which has to be characterized in some way. We begin
with computing the brute-force branching factor, and then consider admissible
heuristic search.

4.1 Brute-Force Branching Factor

The running time of a brute-force search is O(bd), where b is the branching factor
of the search space, and d is the solution depth of the problem instance. In the
sliding-tile puzzles, the branching factor of a node depends on the position of
the blank. If the blank is in a corner, there are two places it can go, if it’s on a
side it can go to three places, and from a center position it can to to four places.
If we assume that all possible positions of the blank are equally likely, we get a
branching factor of (4 ·2+8 ·3+4 ·4)/16 = 3 for the Fifteen Puzzle. Subtracting
one to eliminate the move back to the parent node yields a branching factor of
two.

Unfortunately, the blank is not equally likely to be in any position in a
deep search. In particular, the more central location of the middle positions
causes those positions to be over-represented in the search space. To compute
the asymptotic branching factor, we need to compute the equilibrium fraction
of nodes with the blank in the different types of positions at a given depth of
the search tree, in the limit of large depth. When this is done correctly [2], we
get an asymptotic branching factor of about 2.13 for the Fifteen Puzzle.

A similar situation occurs in Rubik’s Cube, even though all operators are
always applicable. In this case, we eliminate certain operators to avoid redundant
states. For example, if we allow any twist of a single face as a primitive operator,
we don’t want to twist the same face twice in a row, since the same effect can
be achieved by a single twist. Furthermore, since twists of opposite faces are
independent, these operators commute, and we only allow two consecutive twists
of opposite faces to occur in one particular order. These considerations result in
a branching factor of about 13.34847 for Rubik’s Cube, compared to 6 · 3 = 18
for the naive problem space.

4.2 Conditions for Node Expansion

We now turn our attention to heuristic search. The running time of a heuristic
search is proportional to the number of nodes expanded. Both A* and IDA*
expand all nodes n whose total cost is less than the optimal solution cost, i.e.
for which f(n) = g(n) + h(n) < c∗, where c∗ is the optimal solution cost [11].
An easy way to understand this node expansion condition is that any admissible
search algorithm must continue to expand every partial solution path, until its
cost equals or exceeds the cost of an optimal solution, lest it lead to a better
solution.
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4.3 Characterization of the Heuristic

As mentioned above, the central difficulty in analyzing the time complexity of
heuristic search lies in characterizing the heuristic. Previous work on this prob-
lem [11] characterized the heuristic by its accuracy as an estimator of optimal
solution cost, and relied on an abstract analytic model of the search space. There
are several problems with this approach. The first is that to determine the ac-
curacy of a heuristic function on even a single problem instance, we have to
determine the optimal solution cost, which is computationally very expensive on
large problems. Secondly, most real problems don’t fit the restrictive assumptions
of the abstract model, namely that the problem space contain only a single so-
lution path to the goal. Finally, the results obtained are only asymptotic results
in the limit of large depth. As a result, this previous work cannot predict the
actual performance of heuristic search on real problems such as the sliding-tile
puzzles or Rubik’s cube.

In our analysis [9], we characterize the heuristic function by the distribution
of heuristic values over the problem space. In other words, we only need to know
the fraction of states with each different heuristic value. Equivalently, let P (x)
be the fraction of total states in the problem space with heuristic value less
than or equal to x. In other words, P (x) is the probability that a randomly
chosen state in the problem space has heuristic value less than or equal to x.
More precisely, we need the distribution of heuristic values at a given depth of the
brute-force search tree, in the limit of large depth, but we ignore this detail here.
Note that the heuristic distribution says nothing directly about the accuracy of
the heuristic function, except that distributions shifted toward larger values are
more accurate, since we assume that our heuristics are admissible.

For heuristics based on a pattern database, we can compute the heuristic
distribution exactly, simply by scanning the database. If the heuristic is based
on several different pattern databases, we assume that the different heuristic
values are independent. For heuristics based on functions, such as Manhattan
distance, we can randomly sample states from the problem space, and use the
heuristic values of the samples to approximate the heuristic distribution. Note
that in either case, we don’t have to solve any problem instances to get the
heuristic distribution.

4.4 Main Theoretical Result

Here’s the main result of our analysis [9]. Let Ni be the number of nodes at
depth i in the brute-force search tree. For example, Ni might be bi, where b is
the brute-force branching factor. In a heuristic search to depth d, the number
of nodes expanded by A* or IDA* at depth i is simply Ni · P (d − i). At one
level, the argument for this is simple. The nodes n at depth i have g(n) = i, and
P (d− i) is the fraction of nodes n for which h(n) ≤ d− i. Thus, for these nodes,
f(n) = g(n)+ h(n) ≤ i+ d− i = d, which is the condition for node expansion in
a search to depth d.
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The key property that makes this work is consistency of the heuristic func-
tion. We say that h is consistent if for all nodes n and their neighbors n′,
h(n) ≤ c(n, n′) + h(n′), where c(n, n′) is the cost from node n to its neigh-
bor n′ [11]. This is akin to the triangle inequality of metrics, and almost all
admissible heuristics are consistent. If our heuristic is consistent, then the prun-
ing that occurs in the tree doesn’t effect the heuristic distribution of the nodes
that are expanded. Given the number of nodes expanded at a given depth, we
sum these values for all depths up to the optimal solution depth to determine the
total number of nodes expanded, and hence the running time of the algorithm.

4.5 Experimental Results

We have experimentally verified this analysis on Rubik’s Cube, the Eight Puz-
zle, and the Fifteen Puzzle. In each case, for Ni we used the actual numbers
of nodes in the brute-force search tree at each depth. For Rubik’s cube, we de-
termined the heuristic distribution from the pattern databases, assuming the
values from different databases are independent. For the Eight Puzzle, we com-
puted the heuristic distribution of Manhattan distance exactly by exhaustively
generating the entire space, and for the Fifteen Puzzle, we approximated the
Manhattan distance distribution by a random sample of ten billion states. We
then compared the number of node expansions predicted by our theory to the
average number of nodes expanded by IDA* on different random initial states.
For Rubik’s cube, we got agreement to within one percent, and for Fifteen puzzle
we got agreement to within 2.5 percent at typical solution depths. For the Eight
Puzzle, our theoretical predictions agreed exactly with our experimental results,
since we could average the experimental results over all states in the problem
space. This indicates that our theory accounts for all the relevant factors of the
problem.

4.6 The “Heuristic Branching Factor”

From previous analyses, it was thought that the effect of an admissible heuristic
function is to reduce the effective branching factor of a heuristic search relative
to a brute-force search. The effective branching factor of a search is the limit
at large depth of the ratio of the number of nodes generated at one level to the
number generated at the next shallower level. One immediate consequence of our
analysis, however, is that the effective branching factor of a heuristic search is the
same as the brute-force branching factor of the problem space. The effect of the
heuristic is merely to decrease the effective depth of search, by a constant based
on the heuristic function. This prediction is also verified by our experimental
results.

5 Conclusions

Pattern databases [1] automate the design of more effective lower-bound heuris-
tics. We have used them to find optimal solutions to Rubik’s cube. We have also
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extended the original idea to disjoint databases, which allow the values from
different pattern databases to be added together, rather than just taking their
maximum. Disjoint databases reduce the time to find optimal solutions to the
Fifteen Puzzle by over three orders of magnitude, relative to the Manhattan dis-
tance heuristic. In addition, pairwise and higher order distances can also be used
to compute more effective heuristics, but at greater cost per node evaluation.
We have used both disjoint databases and pairwise and higher-order distances
to find optimal solutions to the 5× 5 Twenty-Four puzzle.

We have also developed a new theory that allows us to predict the running
time of admissible heuristic search algorithms. The heuristic is characterized
simply by the distribution of heuristic values over the problem space. Our the-
ory accurately predicts our experimental results on the sliding-tile puzzles and
Rubik’s Cube. One consequence of our theory is that the effect of a heuristic
is to reduce the effective depth of search, rather than the effective branching
factor.

6 Acknowledgements

I would like to thank my collaborators in this work, including Stefan Edelkamp,
Ariel Felner, Michael Reid, and Larry Taylor. This research was sponsored by
NSF grant No. IRI-9619447. This paper also appears in the Proceedings of the
National Conference on Artificial Intelligence (AAAI-2000), Austin, TX, Aug.
2000, and is reprinted here with permission of AAAI. c© 2000, American Asso-
ciation for Artificial Intelligence (www.aaai.org). All rights reserved.

References

1. Culberson, J., and J. Schaeffer. Pattern Databases, Computational Intelligence,
Vol. 14, No. 3, 1998, pp. 318-334.

2. Edelkamp, S. and R.E. Korf, The branching factor of regular search spaces, Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-98), Madison,
WI, July, 1998, pp. 299-304.

3. Hansson, O., A. Mayer, and M. Yung, Criticizing solutions to relaxed models yields
powerful admissible heuristics, Information Sciences, Vol. 63, No. 3, 1992, pp. 207-
227.

4. Hart, P.E., N.J. Nilsson, and B. Raphael, A formal basis for the heuristic de-
termination of minimum cost paths, IEEE Transactions on Systems Science and
Cybernetics, Vol. SSC-4, No. 2, July 1968, pp. 100-107.

5. Johnson, W.W. and W.E. Storey, Notes on the 15 puzzle, American Journal of
Mathematics, Vol. 2, 1879, pp. 397-404.

6. Korf, R.E., Depth-first iterative-deepening: An optimal admissible tree search, Ar-
tificial Intelligence, Vol. 27, No. 1, 1985, pp. 97-109.

7. Korf, R.E., and L.A. Taylor, Finding optimal solutions to the twenty-four puz-
zle, Proceedings of the National Conference on Artificial Intelligence (AAAI-96),
Portland, OR, Aug. 1996, pp. 1202-1207.



Design & Analysis of Admissible Heuristic Functions 55

8. Korf, R.E., Finding optimal solutions to Rubik’s Cube using pattern databases,
Proceedings of the National Conference on Artificial Intelligence (AAAI-97), Prov-
idence, RI, July, 1997, pp. 700-705.

9. Korf, R.E., and M. Reid, Complexity analysis of admissible heuristic search, Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-98), Madison,
WI, July, 1998, pp. 305-310.

10. Loyd, S., Mathematical Puzzles of Sam Loyd, selected and edited by Martin Gard-
ner, Dover, New York, 1959.

11. Pearl, J. Heuristics, Addison-Wesley, Reading, MA, 1984.



B.Y. Choueiry and T. Walsh (Eds.): SARA 2000, LNAI 1864, pp. 57-70, 2000.
 Springer-Verlag Berlin Heidelberg 2000

GIS Databases: From Multiscale to MultiRepresentation1

Stefano Spaccapietra*, Christine Parent**, Christelle Vangenot*

* Swiss Federal Institute of Technology Lausanne (EPFL)
EPFL-DI-LBD, 1015 Lausanne, Switzerland

{spaccapietra, vangenot}@epfl.ch
** University of Lausanne - HEC Inforge

1015 Lausanne, Switzerland
Christine.Parent@hec.unil.ch

Abstract. Cartography is one of the major application areas using
geographical databases. Whether it is for the business of producing paper maps
for sale, or whether it is for displaying maps on a screen to visualize the result
of a query, we need computer systems that know how to represent the same
geographical area at different scales. The concept of multiscale database has
become popular in the GIS domain as a way to enforce consistency between
representations and reduce the global update load. Scaling, however, is just one
of the facets that may lead to keeping several representations for the same real-
world object. Viewpoint and classification are two major abstractions in the
design process that also generate multiple representations. This paper
investigates the generic issues and solutions to achieve flexible support of
multiple representation in a GIS database.

1 Introduction

Geographic data has become quite popular. It plays a major role in information
services to citizens, as one of the most common concerns in everyday life is locating
something we are looking for, or finding a way to reach it. It is the essence of an
increasing variety of societal management applications that range from land
management and ecological monitoring to housing or traffic control. Finally, its
economic importance is recognized by businesses that discover the benefits of
geomarketing strategies.

Maps are the most natural way to convey geographical information, and they are
excellent support to visualize analytical data about phenomena that have a
geographical extent. This includes geography-compliant maps, that show items of
interest as faithfully as possible with respect to their real-word location and shape, as
well as schematic maps (e.g., city transport systems, airline connections diagrams,
train networks, facility management networks), where the focus is on correct
(topological) connections and readability rather than on precisely locating lines and
nodes.
                                                          

1 This work is supported by EEC and OFES as part of the MurMur project within
the context of the 5th Framework IST Programme (project number 10723).
C.Vangenot is supported by FNRS (Swiss National Research Fund) under contract
2100-046664.
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A map is drawn according to a given scale. At different scales, the same
information is usually drawn differently (not just magnified or reduced) because of:
• drawing conventions that may change from one scale to another one,
• items that may appear/disappear or be aggregated/de-aggregated because their

size make them visible/invisible depending on the chosen scale,
• shape of visible items may be modified (made simpler or more precise),
• or simply the information is not available at the requested scale.

To maintain consistency and avoid redundancy, the ideal solution would be a
database where geometry information is kept at the most precise scale, and all
visualizations at less precise scales are automatically derived, mainly through
cartographic generalization processes [21, 35]. Unfortunately, this derivation cannot
be fully automated. Hence, map production systems have to explicitly store several
representations of the geometry of objects (usually one per scale range). This can be
done by either keeping a separate database per scale range, or by using a multi-scale
database, i.e., a database where spatial objects may be associated to a variety of
geometric representations that are scale dependent. More accurately, the latter should
be referred to as a multi-resolution database (scale is a concept that refers to map
drawing). Resolution is usually defined as the minimum geometric dimension that an
object must have in order to be of interest, and consequently represented in the
database. The resolution of information in the database is the resolution that either
was used at data acquisition, or the one that results from a cartographic generalization
process. If different resolutions are associated to the same objects, we can talk about
multi-resolution objects.

Beyond cartography, multiple representations of geographic data are needed to
serve multi-disciplinary user communities, as the same piece of land may support
analysis, planning, and forecast activities by city administrations, environmentalists,
sociologists, botanists, zoologists, etc. Altogether, the variety of representations that
may be recorded in a database for a given object extends over different facets, such
as:
• multiple geometry (within the same or different geometric abstract data types)

may characterize the same object in different contexts,
• coexistence of many abstraction levels in object classification, which may result

in the simultaneous, independent representation of a composed object (i.e., an
object that is built by aggregating a number of component objects, whether the
aggregation is based on geometric, temporal or semantic criteria) and its
component objects,

• coexistence of many abstraction levels in object description, which may result in
attributes having a hierarchical value domain (i.e., a domain composed of a
hierarchically structured set of values, such that values at a node are more precise
than the value in the parent node), and

• multiple representations in terms of thematic information, which corresponds to
maintaining several viewpoints in traditional databases.

Commercial systems poorly support the need for multiple representation. Few
GISs can explicitly represent objects with multiple geometry. Current DBMSs
provide limited support for multiple thematic representation. However, the situation
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may soon evolve as the database and GIS research communities have been active in
developing proposals for new object identification and description schemes. Database
researchers proposed concepts such as roles, prototypical objects, deputy objects, or
aspects. GIS researchers focused on issues such as inter-level connectivity in multiple
level data sets, scale transition relationships, or stratified map space. Interoperable
environments have also been addressed to allow interconnecting related
representations from different information sources. This paper surveys the issues that
have been addressed.

2 A Framework for Multi-representation

We assume that the real world of interest that is to be represented in the database is
composed of objects, their links in between and their static and dynamic properties
(attributes and methods). As representations may vary according to different criteria,
the representation space may be seen as a multi-dimensional space, where each
dimension (or axis) relates to one of the criteria in use. Dimensions we are
particularly interested in here2 are:
• the spatial resolution dimension: coordinates on this axis represent the spatial

resolution ranges for which representations hold;
• the observer�s, or viewpoint dimension: coordinates on this axis represent the

different viewpoints for which representations are elaborated;
• the classification dimension: coordinates on this axis represent object instances as

members of a given object type.
A point in this 3-dimensional space is the representation of an object instance as a

member of the population of a given object type, and according to a given viewpoint
and to a given resolution range. Notice that two points may hold identical values, e.g.,
two viewpoints sharing the same representation for a given object instance at a given
resolution.

The 3D metaphor can easily characterize alternatives in schema definition (how the
data is presented to users) and database definition (how instances are grouped into
databases). For example, current single-resolution spatial databases correspond to
forming a database with representations that lie on a same plane orthogonal to the
resolution axis. A standard map is built from representations that lie on a single
straight line parallel to the classification axis; the position of the line is determined by
the map scale and the target viewpoint. Systems that support objects with multiple
geometry get rid of the resolution axis and work in 2D representation space. Solutions
that decompose the representation space into fragments (sub-cubes, planes or lines)
are likely to require interschema/interdatabase links to be able to associate/retrieve
different representations of the same real world object.

Looking at the state of art and on practical applications, it is easy to see that
researchers usually focus on one dimension only. Multi-resolution databases, views
                                                          

2 For sake of simplicity, we limit ourselves to three dimensions. However, more
could be considered, e.g., a time dimension that would support representations at
different points in time.
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and multi-instantiation are separate research areas, each one pursuing its own
dimension. For sake of simplicity, our survey hereinafter discusses the dimensions
separately.

In the resolution dimension, the following choices may be found:
• each object has a single representation (i.e., one database instance) which

includes multiple geometries, and all object instances are stored in a single multi-
resolution database,

• each object has multiple, interconnected representations (one per resolution
range) and
− there is a single-schema database that stores all representations,
− there is a multiple-schema database (one schema per resolution range)
− there are several single-schema databases (one per resolution range), each

one storing representations that are homogeneous in resolution,
− there are several multi-resolution databases.

In the viewpoint dimension, similar choices may be identified:
• each object has a single representation (i.e., one database instance) which

includes multiple roles, and
− all object instances are stored in a single-schema database,
− all object instances are stored in a multiple-schema database (one schema per

viewpoint),
• each object has multiple, interconnected representations (one per role) and

− there is a single-schema database that stores all representations,
− there is a multiple-schema database (one schema per viewpoint)
− there are several single-schema databases (one per viewpoint), each one

storing representations that belong to the same viewpoint,
− there are several multi-viewpoint databases.

Complementary aspects that will also be discussed are inheritance issues, related to
the third dimension (object classification) and rules for object creation.

3 Multiple Resolution

Data about the same geographical space may be collected at various resolution levels,
to serve different applications within an organization. For instance, the French
National Mapping Agency (IGN) maintains several databases about France, each one
used to produce maps in a specific scale range. Multi-resolution data may also be
needed for one single application, as is the case, for instance, in embedded navigation,
where only parts of the navigation process need detailed information (e.g., the
departure and arrival areas), while for the rest of the navigation only coarse level
information is needed (e.g., for traveling on a highway section). Finally, multi-
resolution data may just be a consequence of integrating data from various digital
sources that have been independently set up. This situation becomes more and more
common: with the focus on data reuse, justified by high data acquisition costs, data
integration has become one of the major challenges in GIS applications.
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3.1. One Object, One Multi-resolution Instance

To move from single-resolution to multi-resolution databases, one solution (assuming
a discrete, vector approach) is to allow an object instance to bear multiple geometries.
Each geometry is qualified with the relevant resolution range. The different
geometries, other than points, are mainly acquired either through separate data
collection processes, or via interactive, cartographic generalization processes, and
have to be explicitly input into the database. This approach follows the representation
principle: one object in the real world translates into one instance in the database.
Proposals by Frank & Timpf [11, 32], Kidner, Jones & al. [15, 17], Bedard [3], and
Vangenot [34] represent variations within this trend.

Multiple resolution, however, does not reduce to multiple geometries. The focus on
objects changes from one resolution level to another: more details bring in more
objects, less details result in objects being aggregated to form new objects of a
different type. Relationships between objects may change, including topological
relationships [14]. Thematic attributes of objects, and even thematic attribute values
may change [28, 29]. A multi-resolution database has to keep track of all links that are
needed to retrieve a consistent subset of database representations for each user
interested in data at a specific resolution. Aggregation links, for instance, are
necessary to support intelligent zooming [11].

A specific case in the category in this section is raised by federated databases. Here,
users access the federated database via a single integrated schema, which describes
virtual multi-resolution instances, but real instances are distributed over a set of
underlying, mono-resolution databases that participate into the federation [7, 25].

If this integrating approach is also used for the viewpoint and classification
dimensions, the result is one instance holding all possible representations. Because of
the complexity of changes that representation of the real world undergoes when
moving from one resolution to another one, keeping all facets in a single-instance
framework may become cumbersome. For instance, displaying a map at a given scale
requires examining all object instances to find out if they have a geometry defined
that corresponds to the requested scale and that is located in the space to be covered
by the map. This leads to building spatial indexes that depend on resolution. Similar
impact makes other traditional functionality (e.g., query processing, access rights
enforcement) more complex to implement.

3.2. One Object, Many Single-resolution Instances

One way to reduce complexity is to split the representation of a real-world object into
multiple, interconnected representations, each one materialized as an object instance
in the database. The question on how to split may be addressed independently from
the user perspective and from the system perspective. On the one hand, database
designers have to decide how information will be presented to users (hopefully, the
way users would like to see it). On the other hand, the way information is actually
stored may be quite different, as the criterion here is system performance or site
autonomy, not user-friendliness. What follows has to be understood as pertaining to
the user perspective.
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Splitting may be along one dimension only: resolution, viewpoint, or classification.
Splitting, as we have stated, means having multiple object instances for the same real-
world object. If the split is by resolution (the case we are discussing in this section),
the different instances will bear different geometries, such that each geometry is
appropriate within a given resolution range. The existence of multiple instances rises
three questions:
• how the instances are classified: into one class in one database schema, into

different classes in the same schema, or into different classes belonging to
different schemas;

• how the instances are related: implicitly, through their identification mechanism,
or explicitly through links (e.g., association or generalization links); and

• which properties are associated to each instance: all properties explicitly or only
properties specific to the resolution of the instance, with other properties
inherited from other instances.

If all instances are classified into a single class, say Building, users will have to
resort to a more complex identification scheme (typically, the "normal" identifier plus
a code corresponding to the resolution level) to denote the instance they are interested
in: e.g., values for building-id may be <building#.resolution-code>, such as 372.r1,
372.r2, etc. If each instance is in a different class, identification will go through the
class name plus the normal identifier. In other words, it is the class name that will
include the resolution code (e.g., Building-r1, Building-r2, �). Current proposals for
multiple instances all go for the second solution. More specifically, they recommend
to group into one schema object types that pertain to the same resolution level. Simply
stated, multiple resolution objects are handled through a set of single-resolution
schemas. The schemas may eventually map to a single physical database, as in
Timpf�s Map Cube model [33]. They may actually be implemented as views over a
global, multi-resolution schema. Or they may map to different databases, one per
resolution range [18].

Regarding inter-instance links, implicit linking through identifiers is possible but
not recommended. It leaves the entire burden to users, provides little support for
consistency and is likely to lead to poor performance. Explicit definition of links is
hence supported by all proposals for multiple instances. Depending on whether the
object types belong to the same schema or not, links will be just a specific kind of
association, or a new type of interschema link. Within the same schema, the semantics
of such a link is that the linked instances "represent the same object at different
resolution levels". This is very similar to the semantics of the traditional is-a link,
where linked instances represent the same object at different semantic resolution
levels, but it does not obey the inclusion semantics that characterizes the is-a link in
current database systems. Indeed, a change in resolution may result in a different set
of objects representing the reality of interest. For example, assuming a database on
roads, moving to a coarser resolution may cause small roads to disappear (they fall
below the threshold) and roads that run in parallel (e.g., highway lanes) to be merged
into a new road object. As a consequence, two types for the same objects at different
resolution will generally have intersecting populations, rather than one included into
the other. This needs a different link than the is-a link. It may even require several
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links between the two types, to express links that may be one-to-one, zero-to-one,
one-to-many, or many-to-many depending on which instances are considered.

As for properties, associating to each instance the whole set of properties that are
relevant for that instance guarantees completeness of the representation, flexibility
and self-contained manipulability. However, this will also need a number of integrity
constraints to ensure that properties that are resolution-independent hold the same
value in all instances. As checking integrity constraints is time-consuming (hence,
lowers performance), modern database systems provide an inheritance mechanism
associated to the is-a link. Unfortunately, as we have just seen, is-a links are not
always appropriate for multi-resolution classifications. More research is needed to
extend the inheritance approach to object types with intersecting populations.

4 Multiple Viewpoint
A viewpoint is what determines a given representation for some reality of interest,
among all possible representations. A viewpoint usually expresses information
requirements from a given set of users that show homogeneity in their requirements.
A viewpoint definition holds a specification of both the data structure (object and
relationship classes, attributes) and  the rules for data usage (e.g., methods and
integrity constraints). As change in the classification of objects is the topic of the next
section, we will limit our discussion here to changes in the descriptive part, i.e., the
attributes (which extends to methods if database design uses an object-oriented
model).

The fact that different users may have different viewpoints is known from the very
beginning in the database field. Support for this diversity is achieved by allowing
definition of personalized views over an underlying global database schema.
However, the extent of flexibility in the view definition mechanism has significantly
changed with the evolution of database technology. Systems developed in the 70s
offered very little flexibility. They supported sub-schemas over the database schema,
where differences between the two mainly stemmed from allowing sub-setting
(selection) and renaming operations in the definition of a subschema.

Relational systems focused on the definition of a derived, virtual table, called a
view, from existing tables. Relational systems achieve maximum restructuring
flexibility, as arbitrary algebraic expressions may be used to build a view (although
the use of binary operators, e.g., join, may result in a view that does not support
update operations). This power in flexibility directly results from the poor semantics
that is embedded in flat relational tables. As the only structure that is supported is the
tuple structure, users can easily build a new tuple structure by relating attributes from
whichever table they want. However, view definition by restructuring operations
means that support is limited to representations that are derivable from existing ones.
For representations that are not 100% derivable the entire burden is on the users.
Users are responsible for adding the necessary artificial keys and foreign keys to link
related tables, and for providing the procedures to enforce the desired consistency
rules.

Object-oriented, or object-relational, database systems fail in supporting similar
flexibility. Object identity and complex object structures both make view definition a
problem that is not easy to solve. Using binary operations results in generation of new
objects, which rises the problem of providing a new object identity and keeping the



64           Stefano Spaccapietra, Christine Parent, and Christelle Vangenot

link between the new object and the objects it stems from. Combining unary
operations (e.g., projection and selection) in the definition of a view raises the issue of
how to insert the view as a new object type in the type hierarchy. This issue has no
solution that obeys the rules of classical object-oriented data models. Complex object
structures induce hierarchical arrangement of data that is not simple to restructure
(and generates new objects). For these reasons most systems based on the object-
oriented approach limit view definition to views that can be constructed using only
selection and renaming operations (i.e., object preserving operations). We are back in
the 70s, but with a more powerful paradigm. On the other hand, compared to
relational systems, object-oriented systems provide additional support for multiple
representations through generalization/specialization hierarchies that materialize links
between instances that represent the same real world object by sharing system-
generated object identifiers. However, this is known to be insufficient (in terms of
expressive power, user-friendliness, and practicality) to provide full flexibility in
multiple representation support.

View definition implements the two facets, presentation and implementation, that
we introduced at the beginning of Section 3.2. Users are presented with object types
and instances that are formatted according to their specific viewpoint. The system
collapses all descriptions into a single multi-viewpoint object. Because users navigate
only within their own viewpoint, there is no need to provide them with facilities to
view data according to another viewpoint. Because of the collapsing into a single
object type, the object type by definition materializes the link between alternative
viewpoints on the same objects. As for the facilities introduced by
generalization/specialization hierarchies and is-a links, they are discussed hereinafter.

A notable exception is the TROPES data model [20], where the focus is on a single
instance solution visible to users. Each object type then bears multiple descriptions
that are qualified by the name of the viewpoint they implement.

Views in GIS have been addressed in [5]. Rather than talking about schemas and
viewpoints in a database terminology, some authors use more GIS-oriented concepts.
For example, Stell and Worboys [31] see the database organized as a stratified map
space, where each map gathers objects that share the same semantic and spatial
granularity. Maps are grouped by map spaces, i.e., sets of maps showing the same
schema at different granularities. The stratified map space is the set of all maps
organized according to a hierarchy based on different granularity levels.
Transformation functions allow navigating in a stratified map space. Finally, a sheaf
is a set of stratified map spaces where each space covers a different spatial or
semantic area.

5 Multiple Classification
Because modeling is expressing general rules about the world of interest,
classification is the most fundamental abstraction in the data modeling process. It
allows to get rid of the details, and talk in terms of object classes, their relationships
and the properties we want to attach to them. It is also a very subjective abstraction.
Classification of the same set of objects is very likely to change when a different
viewpoint on data is taken. Classification may also change in time, whenever objects
acquire new properties or loose properties in their evolution. Even from a single
viewpoint it may be desirable to classify a given object into multiple classes, as
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classification is not necessarily partitioning. Semantic and object-oriented data
models support this by providing the is-a link to define generalization/specialization
hierarchies. However, is-a links only support classification refinement and taxonomic
reasoning. They are not appropriate for arbitrary classifications, where two sets of
objects are related but neither one is included in the other (intersection semantics). To
support intersecting classes, some approaches allow multiple inheritance: the
intersection class may then be modeled as a subtype of the two initial classes. Beyond
the fact that this modeling trick results in the creation of artificial classes (where
artificial means not of interest for the application), its scope is restricted to classes that
belong to the same generalization/specialization hierarchy (because of consistency
rules on object identity).

Another limitation of current generalization/specialization hierarchies is their static
aspect. Objects are not allowed to move from one class to another. Moreover, because
of dynamic binding implementations, objects are not allowed to belong to two leaf
classes. This set of constraints is not acceptable when the focus is on data modeling.
While an ultimate, consensus solution is not yet available to escape from this too rigid
framework, significant research efforts have already produced a number of proposals
which, in different ways and using different terminology, aim at supporting the role
concept [2]. A role is an alternative classification of an object, such that an object may
become a member of several role classes, remain a member for some time and then
release its membership. Objects can move from one role class to another [4, 24]. Role
classes may be static, which means their type is defined in the schema, or they can be
created and deleted dynamically during application execution [24]. In most
approaches role classes are seen as a transient repository for objects from a given
object type, called the base object type. For example, objects of the base type Person
may temporarily belong to role classes such as Student, Worker, Retired. This is
similar to generalization/ specialization hierarchies, except that objects can move
around and belong to many leaf classes at the same time. This transient aspect leads
naturally to propose keeping the lifecycle of objects in roles [27]. In [13, 27] an object
can be instantiated several times as different instances of the same role. This allows
representing, for example, a person who registers as a student in two different
institutions.

An additional requirement for role classes is to accept instances from different
object types that do not belong to the same generalization hierarchy. For example, a
Car-owner role may be populated with instances from the Person type and instances
from the Company type (both companies and persons may own cars). The category
concept [10] was proposed to cope with this situation in the context of the Entity-
Relationship model. In the context of object models, this requirement is easier to
achieve in proposals that do not require the existence of a base object type [12, 16,
19]. In the latter models, the role type concept replaces the object type concept.
Objects can enter the database through creation in any of the roles that accept creation
operations, and then move around according to inter-role links (which can be bi-
directional or not depending on application constraints).

Roles provide a solution to support many representations of a single object, such
that each representation is materialized into one database instance. This scheme is
also referred to as multi-instantiation, although this term is sometimes used to
specifically denote models where every type is considered as a role type [12]. It
allows to easily support properties and relationships that are role-specific. Thus, the
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role concept conveys both a change in classification and a change in viewpoint. It has
been investigated by many authors, resulting in many variations in the rules that
define the allowed data structures (namely, relationships between roles and the
corresponding object type) and the allowed lifecycles (how objects can move around
in roles) [see, e.g., 1, 6, 16, 19, 22, 23].

6 Inheritance
Moving from objects to roles, i.e., from mono- to multi-instantiation, rises the issue of
which inheritance mechanism, if any, should be associated to the inter-role links. It is
indeed not possible to just reuse the object-oriented combination of automatic
inheritance, late binding, refinement, redefinition and overloading. These concepts
and mechanisms are strongly related to the inclusion semantics and mono-
instantiation rules of the generalization/specialization hierarchies that are embedded
in object-oriented data models.

Two basic alternatives have been proposed to replace or complement the automatic
inheritance and late binding approach: either static, explicitly defined inheritance, or
inheritance on demand in query formulation. An example of the former is known as
delegation: the definition of an object/role type includes attributes whose value is not
stored within the instance of that object/role type, but derived from the corresponding
homonym attribute in the corresponding instance belonging to another object/role
type. Reference in a query to one of these derived attributes automatically results in
accessing the other instance to get the requested value. The net effect is similar to
inheritance, but this inheritance is limited to the subset of attributes that the designer
freely chooses. Actually, most proposals go for some mix of automatic inheritance
and delegation. For example, object types and role types are organized into a mixed
hierarchy, where they may be linked by is-a links or by role links. Automatic
inheritance with late binding is the rule for types linked by is-a links, whereas role
links obey the delegation principle [13].

The second solution, specifying the desired inheritance as part of query
formulation, is a sort of adjustable dynamic binding, driven by users� specifications
rather than by static schema definitions. When accessing an object, the user has to
specify the multi-instantiation context to be considered for the query. That is to say,
which other object/role types can be accessed to find the desired property (attribute or
method) if not found in the type directly denoted in the query. We refer to this as the
scope of the query. Moreover, the user can specify in which population the object
instance to start with is to be taken. We refer to this as the selected viewpoint for the
execution of the query. The combination of these two specifications, viewpoint and
scope, gives the user complete control on which object properties have to be accessed
[12].

This is particularly relevant in spatio-temporal databases. Spatio-temporal databases
use system-defined attributes to hold spatial and temporal information. These
attributes have standard names, such as �geometry�, �lifecycle�, or �timestamp�. If
both a superclass and its subclass have specific spatial or temporal information, an
attribute with the same name will exist in both classes. For instance, one may want to
keep the lifecycle of somebody both as a Person and as an Employee, where
obviously the two lifecycles hold different values for the same person. A traditional
dynamic binding mechanism would automatically return the value in the subclass.
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Actually, dynamic binding proceeds from the idea of genericity versus specificity, and
that genericity is seen as a way to abstract from specificity in denoting a method,
while keeping specificity as the goal in executing the denoted method. But in the
lifecycle example there is no such idea. The two values have different semantics, and
there is no reason to substitute one by the other. An application interested in lifecycles
of Person objects would not be willing to get instead lifecycles of objects in
Employee, Student, etc. The same applies to spatial information. Assume the
superclass has spatiality at 1/10�000 resolution and the subclass has spatiality at
1/250�000 resolution. An application drawing a map at 1/10�000 would definitely not
care of spatiality existing at 1/250�000. Once more, a solution is needed that provides
more flexibility and user control on accessing rules. One proposal based on the
viewpoint and scope idea may be found in [8].

7 Object Creation
When an object deserves multiple representations in distinct instances, the question
rises whether there are rules governing creation of instances and their migration from
the population of a type to the population of some other type. For example, in
proposals that assume the co-existence of a base object type (holding properties that
are inherent to the object) and multiple role types (holding properties specific to the
role), objects must be created at first in the base object type. Once created, they can
generate additional instances in the role types, but cannot migrate to role types (where
by migration we mean disappearing from the source population and appearing in the
target population). Consistently, objects cannot be deleted in the base type as long as
they are still represented in a role type.

The workflow that governs the membership behavior of an object can be defined
and constrained in different ways. One approach is the definition of membership
predicates for each object/role type. This allows automatic acquisition of new roles:
when an object instance is modified, its new value is confronted with the membership
predicates and whenever the predicate is satisfied the instance is classified as  member
of that population [23, 24]. Predicates may also be checked on demand, rather than
automatically on modification. Inference rules may be associated to each object/role
type, specifying which other types may or may not be populated by an instance
migrating or being generated from this type [19, 24, 27]. Kambayashi & Peng [16]
propose to associate transformation functions to migration/generation paths, to
compute values and structure for the target instance from one or more source
instances. Transformations between representations have also been addressed in [7,
18].

8 Conclusion
Support for multiple representations has been an active research domain, in particular
over the last decade. However, it is our feeling that only recently it has come out as a
the next major step forward in data modeling technology. Clearly the focus on
reaching operational solutions for object-oriented technology in database management
has driven most of the attention from the research and development world. But the
perspectives that object-based approaches made visible to users have made users more
demanding in terms of satisfaction of their requirements. This gives a substantial new
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impetus to more flexible representation schemes that can support full customization
despite information sharing.

This paper proposed a generic framework to address the multiple representation
problem, making clear that different phenomena contribute to a diversification of
representations. We have investigated the related issues and solutions, showing that,
despite similarities, the approach may differ from one dimension to the other. It may
also differ in between the users� view and the implementation view. We focus on
multiple representation of objects, but the concern extends to relationships, including
topological relationships [9, 14].

The issues we addressed are of great relevance in the GIS world, and directly apply
to multi-resolution geographical databases. The MurMur European project, in which
we are involved, aims at specifying and developing a spatio-temporal data model that
provides concepts and facilities to fully support multi-resolution and multi-
representation. The MADS data model [26] serves as initial framework. The project
started January 1st, 2000 and will last for 30 months. More about the project may be
found in [30].
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Abstract. Soft constraints are very flexible and expressive. However,
they also are very complex to handle. For this reason, it may reasonable
in several cases to pass to an abstract version of a given soft problem,
and then to bring some useful information from the abstract problem to
the concrete one. This will hopefully make the search for a solution, or
for an optimal solution, of the concrete problem, faster.
In this paper we review the main concepts and properties of our abstrac-
tion framework for soft constraints, and we show how it can be used to
import constraint propagation algorithms from the abstract scenario to
the concrete one. This may be useful when we don’t have any (or any
efficient) propagation algorithm in the concrete setting.

1 Introduction

Soft constraints allow to model faithfully many real-life problems, especially
those which possess features like preferences, uncertainties, costs, levels of im-
portance, and absence of solutions. Formally, a soft constraint problem (SCSP)
is just like a classical constraint problem (CSP), except that each assignment
of values to variables in the constraints is associated to an element taken from
a set (usually ordered). These elements will then directly represent the desired
features, since they can be interpreted as levels of preference, or costs, or levels
of certainty, or many other criteria.

SCSPs are more expressive than classical CSPs, but they are also more diffi-
cult to process and to solve. For these reasons, it may be reasonable to work on
a simplified version of the given problem, trying however to not loose too much
information. We propose to define this simplified version by means of the notion
of abstraction, which takes an SCSP and returns a new one which is simpler to
solve. Here, as in many other works on abstraction [11,10], “simpler” may mean
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many things, like the fact that a certain solution algorithm finds a solution, or an
optimal solution, in a fewer number of steps, or also that the abstracted problem
can be processed by a machinery which is not available in the concrete context.

Once we get the abstracted version of a given problem, we 1) process the
abstracted version; 2) bring back to the original problem some (or possibly all)
of the information derived in the abstract context; and 3) continue the solution
process on the transformed problem, which is a concrete problem equivalent to
the given one. All this process has the main aim of finding an optimal solution,
or an approximation of it, for the original SCSP, within the resource bounds we
have. The hope is that, by following the above three steps, we get to the final
goal faster than just solving the original problem.

In particular, we can prove the following:

– If the abstraction satisfies a certain property, all optimal solutions of the
concrete SCSP are also optimal in the corresponding abstract SCSP. Thus,
in order to find an optimal solution of the concrete problem, we could find
all the optimal solutions of the abstract problem, and then just check their
optimality on the concrete SCSP.

– Given any optimal solution of the abstract problem, we can find upper and
lower bounds for an optimal solution for the concrete problem. If we are
satisfied with these bounds, we could just take the optimal solution of the
abstract problem as a reasonable approximation of an optimal solution for
the concrete problem.

– If we apply some constraint propagation technique over the abstract problem,
say P , obtaining a new abstract problem, say P ′, some of the information in
P ′ can be inserted into P , obtaining a new concrete problem which is closer
to its solution and thus easier to solve. This however can be done only if
the semiring operation which describes how to combine constraints on the
concrete side is idempotent.

– If instead this operation is not idempotent, still we can bring back some in-
formation from the abstract side. In particular, we can bring back the incon-
sistencies (that is, tuples with associated the worst element of the semiring),
since we are sure that these same tuples are inconsistent also in the concrete
SCSP.

In both the last two cases, the new concrete problem is easier to solve, in the
sense, for example, that a branch-and-bound algorithm would explore a smaller
(or equal) search tree before finding an optimal solution.

In this paper we show how to use this abstraction framework, and its prop-
erties, to import constraint propagation algorithms from the abstract scenario
to the concrete one. More precisely, we show how to construct propagation rules
for the concrete problem from propagation rules for the abstract problem. This
may be useful when we don’t have any (or any efficient) propagation algorithm
in the concrete setting.

The only other abstraction scheme for soft constraint problems we are aware
of is the one in [12], where valued CSPs [17] are abstracted in order to produce
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good lower bounds for the optimal solutions. The concept of valued CSPs is sim-
ilar to our notion of SCSPs. In fact, in valued CSPs, the goal is to minimize the
value associated to a complete assignment. In valued CSPs, each constraint has
one associated element, not one for each tuple of domain values of its variables.
However, our notion of soft CSPs and that in valued CSPs are just different
formalizations of the same idea, since one can pass from one formalization to
the other one without changing the solutions, provided that the partial order is
total [3]. However, our abstraction scheme is different from the one in [12]. In
fact, we are not only interested in finding good lower bounds for the optimum,
but also in finding the exact optimal solutions in a shorter time. Moreover, we
don’t define ad hoc abstraction functions but we follow the classical abstraction
scheme devised in [6], with Galois insertions to relate the concrete and the ab-
stract domain, and locally correct functions on the abstract side. We think that
this is important in that it allows to inherit many properties which have already
been proven for the classical case. It is however worth noticing that our no-
tion of an order-preserving abstraction is related to their concept of aggregation
compatibility, although generalized to deal with partial orders.

Another abstraction framework for constraints can be found in [5]. However,
it only deals with classical “crisp” constraints, and it aims at abstracting the
domains of the variables, while maintaining the same constraint combination
operator.

The paper is organized as follows. Section 2 summarizes the main notions on
soft constraints and soft constraint propagation. Then, Sections 3 and 4 describe
how to abstract soft constraints, and Section 5 summarizes the main properties
of our approach. Then, Section 6 shows the relationship between abstraction and
local consistency, and finally Section 7 concludes the paper and gives some hints
about possible lines of future work.

A longer, more detailed, and completely formal description of our approach to
soft constraint abstraction has appeared in [2]. Here we summarize the approach
by giving a more informal description and providing several examples, and we
focus on the relationship between abstraction and local consistency.

2 Soft Constraints

A soft constraint [4] is just a classical constraint where each instantiation of
its variables has an associated value from a partially ordered set. Combining
constraints will then have to take into account such additional values, and thus
the formalism has also to provide suitable operations for combination (×) and
comparison (+) of tuples of values and constraints. This is why this formalization
is based on the concept of semiring, which is just a set plus two operations
satisfying certain properties: 〈A,+,×,0,1〉.

If we consider the relation ≤S over A defined as a ≤S b iff a+ b = b, then we
have that:

– ≤S is a partial order;
– + and × are monotone on ≤S ;
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– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a complete lattice and + is its lub.

Moreover, if × is idempotent, then 〈A,≤S〉 is a complete distributive lattice
and × is its glb. Informally, the relation ≤S gives us a way to compare (some of
the) tuples of values and constraints. In fact, when we have a ≤S b, we will say
that b is better than a.

Given a c-semiring S = 〈A,+,×,0,1〉, a finite set D (the domain of the
variables), and an ordered set of variables V , a constraint is a pair 〈def, con〉
where con ⊆ V and def : D|con| → A. Therefore, a constraint specifies a set
of variables (the ones in con), and assigns to each tuple of values of D of these
variables an element of the semiring set A. This element can then be interpreted
in several ways: as a level of preference, or as a cost, or as a probability, etc. The
correct way to interpret such elements depends on the choice of the semiring
operations.

Constraints can be compared by looking at the semiring values associated to
the same tuples: Consider two constraints c1 = 〈def1, con〉 and c2 = 〈def2, con〉,
with |con| = k. Then c1 �S c2 if for all k-tuples t, def1(t) ≤S def2(t). The
relation �S is a partial order. In the following we will also use the obvious
extension of this relation to sets of constraints, and also to problems (seen as
sets of constraints).

Note that a classical CSP is a SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉. Fuzzy CSPs [8,15,16] can instead be modeled in
the SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1],max,min, 0, 1〉.

Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉, their com-
bination c1 ⊗ c2 is the constraint 〈def, con〉 defined by con = con1 ∪ con2 and
def(t) = def1(t ↓con

con1
) × def2(t ↓con

con2
). In words, combining two constraints

means building a new constraint involving all the variables of the original ones,
and which associates to each tuple of domain values for such variables a semiring
element which is obtained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

Given a constraint c = 〈def, con〉 and a subset I of V , the projection of c
over I, written c ⇓I , is the constraint 〈def ′, con′〉 where con′ = con ∩ I and
def ′(t′) =

∑
t/t↓con

I∩con=t′ def(t). Informally, projecting means eliminating some
variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

The solution of a SCSP problem P = 〈C, con〉 is the constraint Sol(P ) =
(
⊗
C) ⇓con: we combine all constraints, and then project over the variables

in con. In this way we get the constraint over con which is “induced” by the
entire SCSP. Optimal solutions are those solutions which have the best semiring
element among those associated to solutions. The set of optimal solutions of an
SCSP P will be written as Opt(P ). In the following, we will sometimes call “a
solution” one tuple of domain values for all the problem’s variables (over con),
plus its associated semiring element.

Figure 1 shows an example of fuzzy CSP and its solutions.
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a b b ... min(1,1) = 1

a b a ... min(1,1) = 1

a a b ... min(0,0.1) = 0

a a a ... min(0,0.3) = 0

Solutions:

x

b a a ... min(0.5,0.3) = 0.3
a b b ... 1

a b a ... 1

Best solutions:

b b b ... min(0.7,1) = 0.7

b b a ... min(0.7,1) = 0.7

b a b ... min(0.5,0.1) = 0.1b b ... 1

y z

b a ... 1

a b ... 0.1

a a ... 0.3

b b ... 0.7

b a ... 0.5

a b ... 1

a a ... 0

Fig. 1. A fuzzy CSP and its solutions.

Consider two problems P1 and P2. Then P1 �P P2 if Sol(P1) �S Sol(P2). If
P1 �P P2 and P2 �P P1, then they have the same solution, thus we say that
they are equivalent and we write P1 ≡ P2.

SCSP problems can be solved by extending and adapting the technique usu-
ally used for classical CSPs. For example, to find the best solution we could
employ a branch-and-bound search algorithm (instead of the classical backtrack-
ing), and also the successfully used propagation techniques, like arc-consistency
[13], can be generalized to be used for SCSPs. The detailed formal definition of
propagation algorithms (sometimes called also local consistency algorithms) for
SCSPs can be found in [4]. For the purpose of this paper, what is important
to say is that a propagation rule is a function which, taken an SCSP, solves a
subproblem of it. It is possible to show that propagation rules are idempotent,
monotone, and intensive functions (over the partial order of problems) which
do not change the solution set. Given a set of propagation rules, a local con-
sistency algorithm consists of applying them in any order until stability. It is
possible to prove that local consistency algorithms defined in this way have the
following properties if the multiplicative operation of the semiring is idempotent:
equivalence, termination, and uniqueness of the result.

Thus we can notice that the generalization of local consistency from classi-
cal CSPs to SCSPs concerns the fact that, instead of deleting values or tuples,
obtaining local consistency in SCSPs means changing the semiring values associ-
ated to some tuples or domain elements. The change always brings these values
towards the worst value of the semiring, that is, the 0. Thus, it is obvious that,
given an SCSP problem P and the problem P ′ obtained by applying some local
consistency algorithm to P , we must have P ′ �S P .

3 Abstraction

The main idea [1,6,7] is to relate the concrete and the abstract scenarios by a
pair of functions, the abstraction function α and the concretization function γ,
which form a Galois connection.

Let (C,�) and (A,≤) be two posets (the concrete and the abstract domain).
A Galois connection 〈α, γ〉 : (C,�) 
 (A,≤) is a pair of maps α : C → A and
γ : A → C such that
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1. α and γ are monotonic,
2. for each x ∈ C, x � γ(α(x)) and
3. for each y ∈ A, α(γ(y)) ≤ y.

Moreover, a Galois insertion (of A in C) 〈α, γ〉 : (C,�) 
 (A,≤) is a Galois
connection where γ · α is the identity over A, that is, IdA.

An example of a Galois insertion can be seen in Figure 2. Here, the concrete
lattice is 〈[0, 1],≤〉, and the abstract one is 〈{0, 1},≤〉. Function α maps all real
numbers in [0, 0.5] into 0, and all other integers (in (0.5, 1]) into 1. Function γ
maps 0 into 0.5 and 1 into 1.

1

0.5

}
}

0

abstract latticeconcrete lattice

0

1

γ

α

α

γ

Fig. 2. A Galois insertion.

Consider a Galois insertion from (C,�) to (A,≤). Then, if � is a total order,
also ≤ is so.

Most of the times it is useful, and required, that the abstract operators show
a certain relationship with the corresponding concrete ones. This relationship is
called local correctness. Let f : Cn → C be an operator over the concrete lattice,
and assume that f̃ is its abstract counterpart. Then f̃ is locally correct w.r.t. f
if ∀x1, . . . , xn ∈ C.f(x1, . . . , xn) � γ(f̃(α(x1), . . . , α(xn))).

4 Abstracting Soft CSPs

The main idea is very simple: we just want to pass, via the abstraction, from
an SCSP P over a certain semiring S to another SCSP P̃ over the semiring S̃,
where the lattices associated to S̃ and S are related by a Galois insertion as
shown above.

Consider the concrete SCSP problem P = 〈C, con〉 over semiring S, where

– S = 〈A,+,×, 0, 1〉 and
– C = {c0, . . . , cn} with ci = 〈coni, defi〉 and defi : D|coni| → A;

we define an abstract SCSP problem P̃ = 〈C̃, con〉 over the semiring S̃, where

– S̃ = 〈Ã, +̃, ×̃, 0̃, 1̃〉;
– C̃ = {c̃0, . . . , c̃n} with c̃i = 〈coni, ˜defi〉 and ˜defi : D|coni| → Ã;
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– if L = 〈A,≤〉 is the lattice associated to S and L̃ = 〈Ã, ≤̃〉 the lattice
associated to S̃, then there is a Galois insertion 〈α, γ〉 such that α : L→ L̃;

– ×̃ is locally correct with respect to ×.

Notice that the kind of abstraction we consider in this paper does not change
the structure of the SCSP problem. The only thing that is changed is the semir-
ing.

Notice also that, given two problems over two different semirings, there may
exist zero, one, or also many abstractions (that is, a Galois insertion between
the two semirings) between them. This means that given a concrete problem
over S and an abstract semiring S̄, there may be several ways to abstract such
a problem over S̄.

Example 1. As an example, consider any SCSP over the semiring for optimiza-
tion 〈R− ∪ {−∞},max,+,−∞, 0〉 and suppose we want to abstract it onto the
semiring for fuzzy reasoning 〈[0, 1],max,min, 0, 1〉. In other words, instead of
computing the maximum of the sum of all costs (which are negative reals), we
just want to compute the maximum of their minimum vale, and we want to nor-
malize the costs over [0..1]. Notice that the abstract problem has an idempotent
× operator (which is the min). This means that in the abstract framework we
can perform local consistency over the problem in order to find inconsistencies.

Example 2. Another example is the abstraction from the fuzzy semiring to the
classical one:

SCSP = 〈{0, 1},∨,∧, 0, 1〉.
Here function α maps each element of [0, 1] into either 0 or 1. For example, one
could map all the elements in [0, x] onto 0, and all those in (x, 1] onto 1, for some
fixed x. Figure 2 represents this example with x = 0.5.

An important property of our notion of abstraction is that the composition
of two abstractions is still an abstraction. This allows to build a complex ab-
straction by defining several simpler abstractions to be composed.

5 Properties of the Abstraction

We will now summarize the main results about the relationship between a con-
crete problem and an abstraction of it.

Let us consider the scheme depicted in Figure 3. Here and in the following
pictures, the left box contains the lattice of concrete problems, and the right
one the lattice of abstract problems. The partial order in each of these lattices is
shown via dashed lines. Connections between the two lattices, via the abstraction
and concretization functions, is shown via directed arrows. In the following, we
will call S = 〈A,+,×,0,1〉 the concrete semiring and S̃ = 〈Ã, +̃, ×̃, 0̃, 1̃〉 the
abstract one. Thus we will always consider a Galois insertion 〈α, γ〉 : 〈A,≤S〉

〈Ã,≤S̃〉.
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abstract problemsconcrete problems

P

α
γ

α

γ( (P))α
α (P) = P

~

Fig. 3. The concrete and the abstract problem.

In Figure 3, P is the starting SCSP problem. Then with the mapping α we
get P̃ = α(P ), which is an abstraction of P . By applying the mapping γ to P̃ ,
we get the problem γ(α(P )). Let us first notice that these two problems (P and
γ(α(P ))) are related by a precise property:

P �S γ(α(P )).

Notice that this implies that, if a tuple in γ(α(P )) has semiring value 0, then
it must have value 0 also in P . This holds also for the solutions, whose semiring
value is obtained by combining the semiring values of several tuples. Therefore,
by passing from P to γ(α(P )), no new inconsistencies are introduced. However,
it is possible that some inconsistencies are forgotten.

Example 3. Consider the abstraction from the fuzzy to the classical semiring, as
described in Figure 2. Then, if we call P the fuzzy problem in Figure 1, Figure 4
shows the concrete problem P , the abstract problem α(P ), and its concretization
γ(α(P )). It is easy too see that, for each tuple in each constraint, the associated
semiring value in P is lower than or equal to that in γ(α(P )).

If the abstraction preserves the semiring ordering (that is, applying the ab-
straction function and then combining gives elements which are in the same
ordering as the elements obtained by combining only), then the abstraction is
called order-preserving, and in this case there is also an interesting relationship
between the set of optimal solutions of P and that of α(P ). In fact,

if a certain tuple is optimal in P , then this same tuple is also optimal in
α(P ).

Example 4. Consider again the previous example. The optimal solutions in P
are the tuples 〈a, b, a〉 and 〈a, b, b〉. It is easy to see that these tuples are also
optimal in α(P ). In fact, this is a classical constraint problem where the solutions
are tuples 〈a, b, a〉, 〈a, b, b〉, 〈b, b, a〉, and 〈b, b, b〉.

Thus, if we want to find an optimal solution of the concrete problem, we could
find all the optimal solutions of the abstract problem, and then use them on the
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Fig. 4. An example of the abstraction fuzzy-classical.

concrete side to find an optimal solution for the concrete problem. Assuming
that working on the abstract side is easier than on the concrete side, this method
could help us find an optimal solution of the concrete problem by looking at just
a subset of tuples in the concrete problem.

Another important property, which holds for any abstraction, concerns com-
puting bounds that approximate an optimal solution of a concrete problem. In
fact, any optimal solution, say t, of the abstract problem, say with value ṽ, can
be used to obtain both an upper and a lower bound of an optimum in P . In fact,
we can prove that

there is an optimal solution in P with value between γ(ṽ) and the value
of t in P .

Thus, if we think that approximating the optimal value with a value within
these two bounds is satisfactory, we can take t as an approximation of an opti-
mal solution of P . Notice that this theorem does not need the order-preserving
property in the abstraction, thus any abstraction can exploit its result.

Example 5. Consider again the previous example. Now take any optimal solution
of α(P ), for example tuple 〈b, b, b〉. Then the above result states that there exists
an optimal solution of P with semiring value v between the value of this tuple
in P , which is 0.7, and γ(1) = 1. In fact, there are optimal solutions with value
1 in P .

Consider now what we can do on the abstract problem, α(P ). One possibility
is to apply an abstract function f̃ , which can be, for example, a local consistency
algorithm (like arc-consistency or path-consistency [14]) or also a solution algo-
rithm. In the following, we will consider functions f̃ which are always intensive,
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that is, which bring the given problem closer to the bottom of the lattice. Also,
functions f̃ will always be locally correct with respect to any function fsol which
solves the concrete problem. We will call such a property solution-correctness.
We will also need the notion of safeness of a function, which just means that it
maintains all the solutions. It is easy to see that any local consistency algorithm,
as defined in [4], can be seen as a safe, intensive, and solution-correct function.

From f̃(α(P )), applying the concretization function γ, we get γ(f̃(α(P ))),
which therefore is again over the concrete semiring (the same as P ). If f̃ is safe,
solution-correct, and intensive, and × is idempotent, we have that

Sol(P ) = Sol(P ⊗ γ(f̃(α(P )))).

Figure 5 describes such a situation.

(P)α

f(~ (P))α

f(~

f(~xO

P

f_sol(P)

γ
α

α

γ
α

γ( (P))α

(P)))αγ(

(P))αγ(P

x idempotent

concrete problems abstract problems

Fig. 5. The general abstraction scheme, with × idempotent.

The statement above does not say anything about the power of f̃ , which could
make many modifications to α(P ), or it could also not modify anything. In this
last case, γ(f̃(α(P ))) = γ(α(P )) � P (see Figure 6), so P ⊗ γ(f̃(α(P ))) = P ,
which means that we have not gained anything in abstracting P . However, we
can always use the relationship between P and α(P ) to find an approximation
of the optimal solutions and of the inconsistencies of P .

Example 6. Figure 7 uses the abstraction in Figure 2 and shows a concrete prob-
lem and the result of the construction of Figure 5 over it.

If instead × is not idempotent, then we can prove something weaker. Figure
8 shows this situation. With respect to Figure 5, we can see that the possible
non-idempotence of × changes the partial order relationship on the concrete
side. In particular, we don’t have the problem P ⊗γ(f̃(α(P ))) any more, nor the
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(P)α f(~ (P))α
f(~ (P))αγ

abstract problemsconcrete problems

P

α
γ

α

=
= γ( (P))α

Fig. 6. The scheme when f̃ does not modify anything.

problem fsol(P ), since these problems would not have the same solutions as P
and thus are not interesting to us. We have instead a new problem P ′, which is
constructed in such a way to “insert” the inconsistencies of γ(f̃(α(P ))) into P .
P ′ is obviously lower than P in the concrete partial order, since it is the same
as P with the exception of some more 0’s, but the most important point is that
it has the same solutions as P .
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Fig. 7. An example with × idempotent.

Example 7. Consider the abstraction from the semiring S = 〈Z− ∪{−∞},max,
+,−∞, 0〉 to the semiring S′ = 〈Z− ∪ {−∞},max,min,−∞, 0〉, where α and
γ are the identity. This means that we perform the abstraction just to change
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the multiplicative operation, which is min instead of +. Then Figure 9 shows a
concrete problem over S, and the construction shown in Figure 8 over it.

(P)α

f(~ (P))α

f(~P

γ
α

α

γ
α

γ( (P))α

(P)))αγ(

x not idempotent

concrete problems abstract problems

P’

Fig. 8. The scheme when × is not idempotent.

Summarizing, the above theorems can give us several hints on how to use the
abstraction scheme to make the solution of P easier: If × is idempotent, then
we can replace P with P ⊗ γ(α(f̃(P ))), and get the same solutions. If instead ×
is not idempotent, we can replace P with P ′. In any case, the point in passing
from P to P ⊗ γ(α(f̃(P ))) (or P ′) is that the new problem should be easier to
solve than P , since the semiring values of its tuples are more explicit, that is,
closer to the values of these tuples in a completely solved problem.

6 Abstraction vs. Local Consistency

It is now interesting to consider the relationship between our abstraction frame-
work and the concept of local consistency.

In fact, it is possible to show that, given an abstraction 〈α, γ〉 between semir-
ings S and S̄ and any propagation rule r in S̄, the function γ(r(α(P )))⊗ P is a
propagation rule for problem P over S. This can be convenient when S does not
have any, or any efficient, propagation algorithms. In fact, in such cases, we can
resort to the propagation algorithms of S̄ to perform propagation also over S.

Notice however that, when S has a non-idempotent multiplicative operator,
function γ(r(α(P )))⊗P could change the solution of P . To avoid this problem,
we just have to follow the same reasoning as in the previous section, that is, to
replace such a function with a function with just inserts into P the inconsistencies
of γ(r(α(P )). We will denote such a function by using a different combination
operator: ⊗0. Thus the function to be used in these cases is γ(r(α(P )) ⊗0 P .
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Fig. 9. An example with × is not idempotent.

Notice that ⊗0 is a non-commutative operator, since it inserts into the right
operand the zeros of the left operand.

This results however hold only when the abstraction is order-preserving. We
recall that this means that applying the abstraction function and then combining
gives elements which are in the same ordering as the elements obtained by com-
bining only. In particular, if two abstract elements α(x) and α(y) are ordered,
then also x and y are ordered as well, and in the same direction.

Theorem 1. Given an order-preserving abstraction 〈α, γ〉 between semiring S
and S̄, assume that S has an idempotent multiplicative operation and consider
any propagation rule r in S̄ and any problem P over S. Then the function
f(P ) = γ(r(α(P ))) ⊗ P is a propagation rule for P .

Proof. By definition, a propagation rule is an intensive, monotone, and idempo-
tent function which takes a problem and returns an equivalent problem over the
same semiring. Since ⊗ is intensive, also f is so. Moreover, by monotonicity of
γ, r, α, and ⊗, also f is monotone.

For proving idempotence of f , we need the order-preserving property of the
abstraction. In fact, consider what happens when applying function f to P :
some tuple values in α(P ), say v̄ = α(v), will not be changed by r, while others
will receive a lower value, say v̄′ = r(v̄). By order-preservation, the new tuples
values in the concrete semiring (that is, γ(r(α(v)))× v), are equal or lower than
the original values. Let us now apply function f again. Function α will bring
these new concrete values to either v̄ (if we start from v) or v̄′ (if we start from
γ(r(α(v)))). In any case, r will bring such values to v̄′, for Lemma 1 (see below).
Thus f is idempotent. Finally, f returns an equivalent problem by the theorem
depicted in Figure 5.
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Lemma 1. Consider any SCSP P over S and any propagation rule r for P ,
with r(P ) = P ′. Then, taken any SCSP P ′′ such that P ′ ≤S P

′′ ≤S P , we have
r(P ′′) = P ′.

Proof. Any rule r solves a subproblem 〈C, con〉 and changes the values of the
tuples connecting the variables in con. Thus the result of applying r is a new
constraint over con: (C ⊗ Ccon) ⇓con, where Ccon is the original constraint con-
necting the variables in con. This can also be written as Ccon ⊗ C ⇓con. Let
us now take any C′′

con such that (Ccon ⊗ C ⇓con) ≤S C′′
con ≤S Ccon. We can

now multiply all these three constraints by C ⇓con, obtaining: (Ccon ⊗ C ⇓con

⊗C ⇓con) ≤S (C′′
con ⊗ C ⇓con) ≤S (Ccon ⊗ C ⇓con). By idempotence of ⊗, we

get: (Ccon⊗C ⇓con) ≤S (C′′
con⊗C ⇓con) ≤S (Ccon⊗C ⇓con). Thus we have that

(Ccon ⊗ C ⇓con) = (C′′
con ⊗ C ⇓con).

We can now prove a similar result for the case of a non-idempotent multi-
plicative operation in the concrete semiring. However, as noted above, we cannot
combine the new problem with the old one, but we can just insert the zeroes of
the new problem into the new one.

Theorem 2. Given an order-preserving abstraction 〈α, γ〉 between semiring S
and S̄, assume that S has a non-idempotent multiplicative operation and consider
any propagation rule r in S̄ and any problem P over S. Then the function
f(P ) = γ(r(α(P )))⊗0P is a propagation rule for P , where ⊗0 inserts the zeroes
of its left operand into the right one.

The proof of this theorem is similar to the previous one, and for the equiva-
lence it refers also to the theorem depicted in Figure 8.

By taking several propagation rules in the abstract semiring, we can thus
obtain an equal number of propagation rules over the concrete semiring. This
set of rules can then be used to perform constraint propagation over a concrete
problem. Notice however that, while an idempotent multiplicative operation in
the concrete semiring allows us to use such rules until stability, with all the
desired properties (equivalence, uniqueness, and termination), in the case of a
non-idempotent multiplicative operation we can just apply the various propaga-
tion rules once each to insert several zeroes into the original problem (with the
same properties as above).

7 Conclusions and Future Work

In this paper we have presented a framework for abstracting soft constraints,
and we have shown how to use it to import propagation rules from the abstract
setting to the concrete one.

An experimental phase is necessary to check the real practical value of our
proposal. We plan to perform such a phase within the clp(fd,S) system devel-
oped at INRIA [9], which can already solve soft constraints in the classical way
(branch-and-bound plus propagation via partial arc-consistency).
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Another line for future research concerns the generalization of our approach
to include also domain and topological abstractions, as already considered for
classical CSPs.

We also plan to investigate the relationship of our notion of abstraction with
several other existing notions currently used in constraint solving. For example, it
seems to us that many versions of intelligent backtracking search could be easily
modeled via soft constraints, by associating to each constraint some information
about the variables responsible for the failure. Then, it should be possible to
define suitable abstractions between the more complex of these frameworks and
the simpler ones.
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Abstract. The goal of conceptual clustering is to construct a hierarchy of
concepts which cluster objects based on their similarities. Knowledge
organization aims at generating the set of maximally specific concepts for all
possible classifications: the Generalization Space. Our research focuses on the
organization of relational data represented using conceptual graphs.
Unfortunately, the generalization of relational descriptions necessary to build
the Generalization Space leads to a combinatorial explosion. This paper
proposes to incrementally introduce the relations by using a sequence of
languages that are more and more expressive. The algorithm proposed, called
KIDS, is based upon an iterative reformulation of the objects descriptions.
Initially represented as conceptual graphs, they are reformulated into abstract
objects represented as <attribute, value> pairs. This representation allows us to
use an efficient propositional knowledge organization algorithm. Experiments
on Chinese character databases show the interest of using KIDS to build
organizations of relational concepts.

Keywords: Relational data, Unsupervised learning, Reformulation

1 Introduction

In Artificial Intelligence, the problem of automatically constructing classifications has
been the subject of much research during the last fifteen years [21], [11], [14]. It
consists in searching for similarities among objects that are not pre-classified and
structuring them in a hierarchy in which similar objects are clustered. Most of the
existing Conceptual Clustering approaches have defined this task as the search for a
classification that would best predict unknown features of new objects [10], [12], [14].
This type of construction is guided by heuristics, which allow one to choose the best
concepts among the set of possible ones. The developed methods have proved their
interest in various fields [21], [11], [14], [17]. More recent research concerns the
construction of classifications that organize knowledge [23], [4]. In this task, the goal
is not to build a subset of the possible concepts but all the concepts clustering similar
objects: the Generalization Space. In these methods, the process of construction is not
based on a numerical distance among descriptions and on a function to be optimized
but on a generalization language.
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Efficient algorithms have been proposed for organizing data described by a set of
pairs <attribute, value> [23] and for taking into account domain knowledge [4], [1].
Our research concerns the organization of relational data, i.e. data represented in more
expressive formalisms (first-order logic, description logic, conceptual graphs).
Unfortunately, the generalization of relational descriptions needed to build the
Generalization Space requires matching graphs and leads to a combinatorial
explosion. To help deal with the complexity of this problem, we suggest an approach
that gradually increases the potential complexity of the descriptions. This is done by
using a sequence of generalization languages with growing expressiveness [8], i.e. less
and less abstract languages. The proposed approach, called KIDS, extends the
propositional approach of knowledge organization COING [1] to a relational
framework. Given a set of objects described using conceptual graphs [25] and domain
knowledge represented in a generalization lattice [22], COING builds the
Generalization Space of propositional descriptions of the objects. KIDS gradually
enriches this space thanks to a generalization language which is made more and more
expressive at each step of the algorithm. This idea, inspired from the REMO system
[28], consists in increasing gradually the structure of matching. The KIDS algorithm is
based upon an iterative reformulation of the data, which allows us to use COING on
the reformulated descriptions of the objects.

In the next section, we present the COING method for knowledge organization.
Although COING is based on relational descriptions of data, it does not use the
structure of the descriptions in the construction of the Generalization Space. Section 3
introduces the notion of abstract relations and their associated Generalization Space.
Section 4 describes the principle of our approach which is based upon successive
graph reformulations into abstract arcs. We illustrate our approach on an example. In
the next section, we evaluate KIDS on a Chinese characters database. These
experiments show the feasibility of the proposed approach. Finally, in section 6, we
conclude with a brief summary and outline directions for future research.

2 Organization of Relational Knowledge

2.1 A Graphical Representation of Relational Data

In the automatic construction of classifications, choosing the right language for
representing the objects is very important; it has an impact on the efficiency of the
algorithms manipulating them. The more expressive a language is, the more complex
are the algorithms manipulating it. Objects are structured, and this is true in many
fields; they may be decomposed into several parts, and these are then linked together
thanks to various relations (for example a part-of relation). Attribute-value languages
do not easily allow such structures to be represented. We use a language based on a
higher-order logic and represent relational descriptions of objects in the conceptual
graphs formalism. However, the choice of the conceptual graph formalism is not a
limitation of our approach since it may be applied to any relational data described by
graphs.
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A conceptual arc is a triplet: [concepts]->(relation)->[conceptd],
where (relation) corresponds to a relation between [concepts] and
[conceptd]. A conceptual graph is a graph composed of a set of conceptual arcs.
For more information about conceptual graphs, the reader should refer to [25] [5].

Figure 1 below presents an example of a house description using conceptual
graphs. The triplet [Window]-> (colour) -> [White] is a conceptual arc.
This example is used throughout the article to illustrate the algorithms presented.

  

House

Black

colour

Big

size

Window

White

colour

Gray

colour

Small

size

Window

White

colour

hashas

Fig. 1. A house and its description as a conceptual graph.

2.2 Organizing Data in a Generalization Space

Given a set of object descriptions and a generalization language, the associated
Generalization Space (GS) is the set of the maximally specific conjunctive concepts
generalizing these descriptions. In the GS, a node ni is a pair (ci, di). The element ci,
called the coverage of ni, is the set of objects covered by ni; and di, called the
description of ni, corresponds to the common features (least general generalization) of
the objects of ci. In the GS, a node corresponds to a cluster of objects described in
intension by its description di and in extension by its coverage ci. Nodes of GS are
partially ordered by a subsumption relation between concepts. Given a node ni with
coverage ci, its ancestors are all the nodes nj, such that Cj ⊃ Ci. This partial order
provided the GS with a pruned lattice structure1, which may be represented by an
inheritance network. Indeed, GS nodes inherit the descriptions of the nodes which are
more general.

Figures 3 and 9 present two different Generalization Spaces of the same objects
(as explained in the next section, part of their node descriptions come from the use of
a generalization lattice over the types). Their differences lie in the expressiveness of
the generalization language used to build the GS. In effect, given a set of object
descriptions, depending on the language chosen to describe the generalizations (the
node descriptions), the nodes of the associated GS will not be the same. The node n�3
in the GS of figure 9 for example does not appear in the GS of figure 3. Moreover, for
a given set of objects, nodes belonging to different GS but having the same coverage
may have a more or less general description. The node n�2 in the GS of figure 9 and

                                                          
1 The Generalization Space may also be defined by the two isomorphic lattices: the Galois

lattice of concept descriptions (partially ordered by the subsumption relation) and the lattice
of objects (partially ordered by the inclusion relation) [20].
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the node n2 in figure 3 have the same coverage on objects ({h2, h3}) but the
description of the node n�2 is more specific than that of n2.

2.3 COING: A Practical Approach to Building a Generalization Space

COING is an ascending method for building a GS: it relies upon the generalization of
the objects descriptions. In COING, objects are represented using conceptual graphs.
In order to deal with the problem of matching graphs which is known to be NP-
complete [13], [16], COING transforms the graph representation into an arc
representation. In other words, each graph describing an object is transformed into a
set of independent arcs. For example, the graph describing the house in figure 1 is
decomposed into a set of 8 arcs. Instead of trying to match a graph G1 with a graph
G2, COING only searches for a partial matching of an arc from G1 with an arc from
G2 [1]. This restriction has been previously used in [23]. It has the advantage of
limiting the complexity of the algorithm (in the worst case quadratic with the number
of objects [1]) because, as the arcs are oriented they fully match [2]. However, this
restricts the generalization language since the relations among arcs are not considered.

The COING principle for building the GS is as follows:
1. Reformulate each graph describing the objects to be organized as a set of

arcs.
2. Generalize each arc describing the objects. COING  integrates an efficient

method for taking into account domain knowledge in the GS construction [2].
This knowledge, represented in a generalization hierarchy (called the �type
lattice� in the conceptual graphs formalism [25]) expresses, for example in
the domain of colours, that the type Black and White (noted B&W) is a
generalization of the three types White, Black and Gray. Figure 2
below presents part of the concept type lattice used for the houses.

3. Group the generalized arcs and initial arcs covering the same set of objects.
For example, the arc [Window]->(colour)->[B&W] is a generalization
of the two arcs (thanks to the type lattice above on figure 2): [Window]-
>(colour)->[Gray] and [Window]->(colour)->[White].
This arc will be part of the description of the node covering objects described
by one of these arcs.

4. Filter the generalized arcs. Indeed, for a given matching there are several
possible generalizations. For example, the two arcs [Window]-
>(colour)->[B&W] and [Window]->(colour)->[Colour] are
both generalization of the arcs: [Window]->(colour)->[White] and
[Window]->(colour)->[Gray]. This step considers each set of arcs
for a node and chooses the arcs that will form the description of this node in
the GS. In constructing the GS, the number of generalizations is limited while
considering only the most specific ones. The filtering step thus consists in
memorizing only the most specific arcs (on the example above, the arc
[Window]->(colour)->[B&W]).

5. Finally, the nodes are connected thanks to the inclusion relation existing
among their coverages.
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Fig. 2. Part of the concept type lattice used for the house domain

In order to illustrate the COING approach, let us consider the three houses h1, h2
and h3 whose descriptions need to be organized. These houses are described by their
windows which have two proprieties: a colour and a size. Figure 3 below presents the
GS built by COING for these houses.
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Fig. 3. Generalization Space built by COING
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This Generalization Space contains two class nodes (n1 and n2) and three object
nodes corresponding to the houses (box nodes). The node n2, for example, clusters the
houses h2 and h3. Its coverage is {h2, h3} and its description is the arc [Window]-
>(colour)->[Gray]. This class node indicates that h2 and h3 have at least a
gray window in common in their descriptions and that this property is not shared by
any other object considered. Thanks to the structure of the GS, we may add the
description of the root node (n1) to this description. More precisely, we add the arcs
from n1 which are not generalizations of arcs from n2, for example the arc
[Window]->(Size)->[Big]. Finally, the GS indicates that the two houses h2
and h3 have window(s), which have a size (Small, Big) and a colour (gray
and black).

Let us clarify why the arc [Window]->(colour)->[B&W] appears in the
root node and why the arc [Window]->(size)->[Size] does not. This
explanation will clarify the 3rd step of the COING principle (cf. previous page).

- The arc [Window]->(colour)->[B&W] is a generalization of the arc
[Window]->(colour)->[Black]. As this last arc is more specific
and since they have the same coverage on objects ({h1, h2, h3}), the arc
[Window]->(colour)->[B&W] should not appear. However, this arc is
useful because its coverage on arcs is bigger than that of [Window]-
>(colour)->[Black]: it also covers the arcs [Window]-
>(colour)->[White] and [Window]->(colour)->[Gray]. In
fact, this arc tells us that there is a window whose colour is [B&W].

- Consider now the arc [Window]->(size)->[Size]. It is more general
than both the arcs [Window]->(size)->[Small] and [Window]-
>(size)->[Big]. The coverage on objects of these three arcs is the same
({h1, h2, h3}). The coverage on arcs of [Window]->(size)->[Size]
is exactly the union of the coverage on the arcs of the two arcs [Window]-
>(size)->[Big] and [Window]->(size)->[Small]. The arc
[Window]->(size)->[Size] is therefore not useful and not
informative; it should not be part of the root node description.

2.4 The Trade-Off between a Truly Relational Generalization Space and an
Efficient Algorithm

In order to deal with the traditional knowledge representation trade-off [13] between
an expressive language and an efficient algorithm, COING reformulates conceptual
graphs into conceptual arcs. This simplification supplies the COING algorithm with a
quadratic complexity in the number of objects, but restricts the generalization
language, i.e. the expressiveness of the descriptions of the GS nodes. Let us illustrate
this point using the house example. The three houses h1, h2 and h3 all have a small
window and a black window; for h1 and h2 it is the same window, whereas for h3 it is
not. This difference does not appear in the classification built by COING (see figure
3) since it requires representing relations between two arcs.

Given a set of objects described as graphs in the conceptual graph formalism, each
node in the GS would ideally be represented by the graph that is the least general
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generalization of the graphs describing the objects it covers. Let us note this
generalization space as GSmax. In fact, due to the complexity of the subsumption
relation  and the exponential growth of the length of the least general generalization,
building GSmax directly using an exhaustive method is not practical. The matching
curse is also true for the first-order languages used in Inductive Logic Programming
(ILP) [24]. The syntactical restriction on clauses (such as ij-determinacy) used to
devise efficient ILP algorithms [24] are similar to the restrictions on graphs used to
devise graph-based algorithms [1], [20]. Informally, most of them consider a
generalization language that avoids matching graphs as much as possible. One of the
systems that performs extensive (sub-)graph matching is SUBDUE [7] whose goal is to
discover substructures in data using a fuzzy graph match. However it is concerned
with repeated sub-graphs within one given object and does not address the problem of
building a GS. Liquière and Sallantin [20] proposed an algorithm that directly builds a
GS but the graphs considered should be locally injective.

Apparently, the matching curse is such that efficiently building a Generalization
Space means ignoring the inherent complexity of one-to-many relations that are the
source of the matching complexity. The solution proposed in this paper is to build an
initial GS using a propositional language and then to iteratively enrich the descriptions
of its nodes.

3 Abstract Relations and Abstract Generalization Spaces

As stated informally by Giunchiglia and Walsh [15] an abstraction �is the process of
mapping a representation  problem called  �the ground� representation  onto a new
representation, called the �abstract� representation which helps deal with the
problem in the original search space preserving certain desirable properties and is
simpler to handle as it is constructed from the ground representation by �throwing
away details�. In fact, the reformulation step of the COING algorithm presented in
section 2 may be seen as a particular abstraction [6], [9]; an abstraction of graphs that
�threw away� details about relations between arcs. This abstraction2 has proven to be
very efficient in terms of complexity for building the Generalization Space but is a
restriction of the generalization language as mentioned above. Let us call GS0 the
obtained generalization space. This section explores other related abstractions and
their use to iteratively enrich the Generalization Space GS0.

3.1 Enriching the Description of the Nodes of GS

Let us first state a property with respect to Generalization Spaces:
If there exists a sub-graph Sgn which generalizes n object descriptions, then
there is in GS0 a node whose coverage contains these n objects (and possibly
others) and whose description contains all the arcs of the generalizing sub-
graph Sgn.

                                                          
2  Using Giunchiglia and Walsh terminology, this abstraction is a TD-abstraction [15].



94           Isabelle Bournaud, Mélanie Courtine, and Jean-Daniel  Zucker

In other words, this property of GS means that to enrich any node of a GS, it is
sufficient to restrict the search for richer descriptions only to the objects it covers.
This principle simplifies the process of enriching a GS. In effect, the nodes of GS0
(found by COING) are a subset of the nodes of a GS whose generalization language is
richer than the one used in COING and the description of each node of GS0 is more
general than that of GS.

3.2 Abstract Relations

Underlying the approach proposed here is a view of particular sub-graphs as abstract
arcs. Informally, given two concepts concepts and conceptt in a graph, an
abstract relation relationa corresponds to a relation between concepts and
conceptt denoted by the path between them. Let us consider the following sub-
graph made of two connected arcs:

[House] -> (has) -> [Window] -> (size) -> [Small]

The triplet (has)->[Window]->(size), which is in the box, may be abstracted
into a new relation (has-size)a:

[House] -> (has-size)a -> [Small]

The obtained arc (containing an abstract relation) is called an abstract arc. Given a
set of abstract relations, a graph Ga describing an object may be reformulated into a
set of abstract arcs. Since the graph Ga is represented as arcs, COING may be used to
organize it.  

3.3 Principle of an Iterative Algorithm to Enrich GS

The principle of the proposed approach is to incrementally enrich GS by gradually
increasing the depth of the abstract relations used. KIDS starts with the GS provided
by COING, then in the first step, it uses a language of abstract relations corresponding
to two connected arcs, in the second step a language of abstract relations composed of
three connected arcs, and so on. In each step, the objects descriptions corresponding
to the GS nodes that may be enriched are reformulated into abstract arcs based upon
these relations. The reformulated descriptions are then processed by the COING
system. This approach is inspired by the supervised learning system REMO in which
the structure of matching is enriched at each step [28].

The figure 4 below presents the general KIDS principle.
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COING

Reconstruction

Reformulation

Construction of GS

Simplification

Abstracting
relations

Set of structures as graphs

Set of nodes of arcsSet of structures as arcs

Set of nodes of structures

GS enrichedSet of objects
as conceptual graphs

Fig. 4. Principle of KIDS.

4 KIDS: An Algorithm to Organize Conceptual Graphs

4.1 Canonical Abstracted Relations

Given the language of conceptual graphs, and depending on relations between concept
types, there are numerous kinds of abstract relations. The number of reformulations of
a graph into a set of abstract arcs typically increases with the number of abstract
relations allowed. There is indeed a need for characterizing a set of abstract relations
that will correspond to a particular generalization language. Our goal is to propose a
set of abstract relations paramerized by a level. Abstract relations of level l correspond
to sub-graphs consisting of l+1 arcs. Using an abstract relation of level l correspond to
a generalization language of GS where l+1 arcs are connected; COING abstract
relations (level 0) correspond to one arc.

We have defined the following types of sub-graphs: sequence, star and hole.

Definition 1 (sequence-structure): A sequence is composed of a succession of arcs,
which are connected one-to-another thanks to a common concept. This concept is the
target of the first arc and the source of the other one.

Abstract relations corresponding to sequence structures have been defined in
section 3.2. In this latter case, because the sequence is an ordered structure, the
direction of the abstract relation is implicitly given.
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   Window   has   House   Small   size   

Fig. 5. Example of a sequence-structure composed of two arcs through the common concept of
Window.

Definition 2 (star-structure): A star is composed of a set of conceptual arcs which
have the same source.

 

  

House   

has   

Window   Window   

has   

Fig. 6. Example of a star-structure composed of two arcs.

In the case of star structures, depending on the choice of the source and target
concepts (concepts and conceptt) for the abstract relation considered, several
abstract arcs may be generated. Let us consider the sub-graph of figure 6 above. The
triplet <-(has)<-[House]->(has)-> which is in the dotted box, may be
abstracted into a new relation (two-sources-has)a:

[Window]->(two-sources-has)a->[Window]

In this particular case, both abstract arcs are identical because the concepts at stake are
both Window. The semantics of this abstract relation may be informally given has
�targets of a same source�.

Definition 3 (hole-structure): A hole-structure is composed of a set of conceptual
arcs which have the same target (concept).

 

Door   

left   

Window 
Window   

right   
above   

Window 

Fig. 7. Example of a hole-structure composed of three arcs.

In the case of hole structures, depending on the choice of concepts and
conceptt, several abstract arcs may also be generated. The semantics of the abstract
relation may be informally given has �sources with the same target�. It corresponds to
the inverse of a star structure. In the above example of figure 7, any two of the three
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Windows may be related by an abstract relation. One abstract relation is directly
represented on figure 7 in the dotted box, where the window (left) is related to the
window (above).

[Window] -> (three-origins-position)a -> [Window]

Let us illustrate the kind of graphs KIDS manipulates at the different steps. At the
first step, KIDS manipulates structures of level 1 composed of 2 arcs (cf. Figures 5
and 6). At the second step, KIDS manipulates structures of level 2 composed of three
arcs (cf. Figure 7); at the i step KIDS manipulates structures of level i composed of
i+1 arcs. Figure 8 below presents the structures performed by KIDS at levels 1 and 2
for the house described in figure 1. Notice that this description does not contain any
hole structures, nor sequence structures of 2nd level.

 

Sequences Window has House White color 

Window has House Gray color 

Window has House Small size 

Window has House Big size 

Window has House Black color 
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Big 
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Gray 
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First level structures Second level structures 

No sequence 

Fig. 8. Example of structures manipulated by KIDS.

The choice of these three sub-graphs (sequence, star and hole) was guided by a
simplicity and generic criteria. We are currently working on formally demonstrating
that any graph may be generated using these structures. One could choose other sub-
graph structures as well, but they would have to respect this hypothesis in order to
allow the method to truly perform any graph.

4.2 KIDS Algorithm

The principle of the KIDS algorithm is to explore, at the ith step, only the nodes which
may be enriched, i.e. the nodes whose descriptions potentially contain an ith level
structure. In practice, at step (i+1), KIDS explores all the nodes which were modified
in step i. Indeed, a (i+1)th level structure is the aggregation of an ith structure and one
arc. We define a candidate node as following:
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Definition 4 (candidate node): a node of the GS is a candidate node for KIDS at step
i if it has been modified at step i - 1.

In the first step, KIDS explores all the GS nodes built by COING. The GS
enrichment algorithm is as follows (cf. Table 1):

1. For each object covered by a candidate node, determine its ith level
description: (i+1) connected arcs. It consists of abstracting the object
descriptions using the three structures: sequence, star and hole.

2. Apply COING to the reformulated object descriptions. The result is the
addition of new nodes to the GS and/or the modification of the descriptions
of existing GS nodes. Notice that the new descriptions found by COING have
to be reformulated in terms of sub-graphs. It consists of reformulating the
descriptions using the abstract relations.

3. If KIDS modifies the GS at the ith step, then repeat the method from 1) at the
(i+1)th level (i+2 connected arcs).

KIDS_Algorithm (GS: Generalization Space; l: level)
GS_modified ←←←← false 
Nodes_List ←←←← list of GS candidate nodes
for all the nodes n of Nodes_ List do

Objects_ List ←←←← Description of n's objects at the lth level
GS_enriched ←←←← COING_Algorithm(Objects _List)
if GS_enriched modified then GS_modified ←←←← true
GS ←←←← Add (GS_enriched, GS)

end for
if GS_modified == true then KIDS_ Algorithm(GS,l+1)

Table 1: KIDS main algorithm

While the complexity of the matching for generalization is avoided by the use of
abstract relations, the complexity of graph matching is not suppressed; it is instead
moved to the reformulation of the descriptions. In fact, the more complex the abstract
relations are (the higher the KIDS level), the more complex the reformulation is.
Nevertheless, the GS's specific structure and KIDS's iterative method allow us to limit
the number of nodes to be explored at each step, while exploring only the ones that
can be enriched.

However, in order to find all the structural similarities among the descriptions,
KIDS needs to be applied up to the level of structure of the maximum level in the
objects descriptions. In other words, if there are at least two descriptions including a
structure of level l, KIDS will have to be applied up to the l level to assure a search for
all the similarities.

KIDS stops either when there is no more candidates node, or when it is not
possible to describe the objects at the next level (there is no structures of (i+2) arcs in
the descriptions). Experimentally, the time needed to apply the algorithm at the next
level may be evaluated from the time needed to build the GS at the previous level. It is
possible to approximate the time required for the next level and to stop KIDS if this
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time is too long. Experiments in section 5 show that in our particular domain, the
increase of time required between two successive levels is linear. As such, KIDS may
be seen as an �anytime algorithm�. Anytime algorithms give intelligent systems the
capability to trade off deliberation time for quality of results [27].

4.3 Example: Organizing Relational Data with KIDS

Let us consider again the example of the houses presented in section 2.3 (figure 3) to
illustrate KIDS's improvement over COING. Figure 9 below presents the enriched GS
obtained by KIDS at the 1st step using the type lattice of figure 2. The information
drawn in black is the KIDS's result and COING's are in gray.
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Fig. 9. Generalization Space enriched by KIDS

The abstraction allows us to discover common substructures between the object
descriptions. At the 1st step, KIDS finds structural descriptions not found by COING;
for example, the fact that all the houses have (at least) two windows and that all
these windows have a color (W&B or Black) and a size (Small or Big).
Furthermore, KIDS found a class clustering h1 and h2 and only these two houses: they
have a small black window in common and this window does not appear in the
description of h3 (even if h3 has a small window and a black window but it is
not the same window). This similarity is found by KIDS at the 1st step, because it is a
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special composition of two arcs. In this example, KIDS enriched the description of the
GS's existing nodes and added a new node to the GS clustering h1 and h2. Thus, from
a GS built using a propositional language, KIDS has been able to give more precise
information on the existing similarities among the objects thanks to an abstraction of
sub-graphs.

For this example, it is useless to apply KIDS at the 2nd step. Indeed, the
descriptions of the houses h1, h2 and h3 do not contain stars, holes or sequences of
level 2; the structures contained all connect 2 arcs. Therefore, 1st level structures are
enough to entirely describe the given houses h1, h2 and h3.

5 Experiments 

The KIDS algorithm presented in the previous section was primarily designed to
address the tradeoff between the complexity of building a Generalization Space and
the expressiveness of the generalization language used to describe its nodes (cf.
section 2.4). As opposed to direct methods that must first define a generalization
language before building a Generalization Space, KIDS iteratively reformulates the
descriptions into richer generalization languages to enrich a GS, as long as
computational resources are available and enrichment is possible. This section
presents several experiments aimed at evaluating KIDS empirically:

- A first dimension of experimentation considers the time complexity required
to build the Generalization Space in function of the KIDS level. Indeed, in
the worst case (where the size of the GS is 2N and where nodes may be
enriched at each step), the complexity of enriching the GS is, in theory,
growing exponentially with the level (there is indeed no �free-lunch�).
However, in practice, the GS are often much smaller, and fewer and fewer
nodes are effectively enriched. In particular, our goal was to analyze the
complexity in terms of both the level and the number of considered objects.

- A second dimension of experimentation concerns the evaluation of the
multiplicative factor in the time required to build a GS from one level to
another.

- Besides these two dimensions, we were looking for the gain of KIDS over
COING in terms of the number of nodes created. Indeed, a reasonable
growth of the number of nodes along with the level would account for the GS
enrichment.

The domain considered for these experiments is related to the task of building
classifications of Chinese characters for pedagogical purposes. We briefly recall  the
context of this work, the reader should refer to [1], [3] for more information about this
application.

5.1 Description of the Relational Data

The database considered is a collection of 6780 Chinese characters. Each character is
represented by a conceptual graph. Characters are described by the following
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characteristics: their initial and final pronunciation, the tone of this pronunciation, the
components (between 1 and 5) and their relative positions and the key component. For

example, the conceptual graph of figure 10 represents the character , which is
composed of the radicals C5381 and C2843, which is pronounced « qing » (using the
transliteration system called pinyin), in tone 2 and which means "feeling".

Fig. 10.  Conceptual graph describing the character  

The type lattices used for the Chinese characters are presented in the following
figure 11:

j q x

palatal dental

t d

initial pronunciation

labialnosed-voyel

in_n in_ng

composed-voyel

in_o in_e

final pronunciation

an en ang ing

Tc

meanscomposedpronunciationtonepositionfollowed

Tr

Fig. 11. Part of the type lattices for the Chinese characters

5.2 Results and Discussion

We evaluated KIDS on several databases of characters composed of 10 to 160 or 416
characters. Figure 12 shows the total time required for generating the GS for these
databases using the COING and the KIDS algorithms.
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Fig. 12. Average execution time of COING and KIDS on Chinese characters databases.

In practice, the CPU time of the proposed algorithms is linear (it is quadratic in the
worst case in COING [1]) with the number of objects. These results may be surprising
because as it manipulates sub-graphs, KIDS introduces a complexity factor. However,
the combinatorial explosion due to the generalization of sub-graphs is limited since a
higher levels (i.e. the more complex are the graphs to be generalized), there are fewer
sub-graphs matches that need to be performed.

The level introduces a multiplicative factor. The linear growth means that on the
average, the time needed to move to the next level is very close to constant. Figure 13
below illustrates this result.
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Fig. 13. Evolution of the multiplicative factor as a function of the algorithms used.

During these experiments, we also evaluated the evolution of the number of GS
nodes as a function of the algorithms used. For COING, this number is in the worst
case in O(N) [1]. Figure 14 summarizes these results.
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This graph shows that the number of GS nodes grows until a specific level � 1st

level for the small bases and 2nd level for largest � then it becomes constant. This may
be explained by the fact that from a specific level, KIDS does not allow the creation of
new classes, but only enriches the already existing ones with more complex
descriptions.

6 Conclusion

Organizing relational data has many applications in the field of data mining,
knowledge indexation or systematic but may also be used to extract conceptual
hierarchies. The problem of conceiving efficient algorithms for this purpose is hard
because of the known graph-matching complexity. This paper has proposed an
abstraction based approach to incrementally introduce the complexity of the relations
by using a sequence of languages that are less and less abstract. The algorithm KIDS
builds an initial GS using a propositional language and then iteratively enriches the
descriptions of its nodes.

We have implemented and successfully tested our approach. Our experiments
suggest that the proposed method provides an organization of relational concepts
while keeping a linear complexity in practice with the number of objects. This result is
due to the fact that the more complex the structures are, the less nodes need to be
explored. Our work supports the idea that iterative abstraction may be an appropriate
approach to deal with the traditional representation trade-off. By increasing the
expressiveness of the language, the solution is refined at each step and results from the
previous step are used to reduce the complexity of the current step.

The first perspective of this work is to characterize more precisely the generalized
language used in the enriched GS. Indeed, characterizing the GS's enriched language
allows us to evaluate the usefulness of sub-graphs and to filter them in order to keep
the useful ones.
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Another possible improvement of the algorithm is to define methods for evaluating
the effectiveness of KIDS for a given database. Indeed, when types in the description
of a conceptual graphs database appear only once, it is not necessary to apply KIDS to
this database because the decomposition does not cause a loss of information. In
contrast, if a type appears several times in the descriptions (like in the houses), it is not
possible to differentiate them. So, we can consider a pre-processing on the data to
evaluate the maximal level of KIDS application.

Finally, we plan to extend this method for a more efficient processing of numerical
data. Currently, the numerical information contained in descriptions is processed as
symbols; the implicit order existing between numbers is not taken into account. A
preprocessing of descriptions would make it possible to determine a hierarchy of
generalization of the numerical values. The creation of new values of attributes, as is
the case in constructive induction, would make it possible to better account for the
similarities between descriptions [18], [26].
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Abstract. The selection of predefined analytic grids (partitions of the
numeric ranges) to represent input and output functions as histograms
has been proposed as a mechanism of approximation in order to control
the tradeoff between accuracy and computation times in several areas
ranging from simulation to constraint solving. In particular, the appli-
cation of interval methods for probabilistic function characterization has
been shown to have advantages over other methods based on the sim-
ulation of random samples. However, standard interval arithmetic has
always been used for the computation steps. In this paper, we introduce
an alternative approximate arithmetic aimed at controlling the cost of
the interval operations. Its distinctive feature is that grids are taken into
account by the operators. We apply the technique in the context of prob-
ability density functions in order to improve the accuracy of the prob-
ability estimates. Results show that this approach has advantages over
existing approaches in some particular situations, although computation
times tend to increase significantly when analyzing large functions.

Keywords: Interval computations, probabilistic analysis, estimation, approxi-
mate arithmetic, abstract interpretation.

1 Introduction

Recently, there has been increasing interest and activity in the theory and ap-
plication of Interval Analysis and Interval Computation [1, 12, 14]. These tech-
niques are recognized as a powerful tool for manipulating imprecise data and
dealing with uncertainty. Therefore, they provide a formal basis for abstractions
aimed to support quantitative approximation processes in a large number of ap-
plication areas ranging from, e.g., robotics to constraint programming [2, 3, 11].

The point of view of using interval arithmetic as an abstraction can be de-
scribed formally in terms of abstract interpretation [8]. A set of values in the
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Fig. 1. Relationship between domains in abstract interpretation

concrete domain D of operands (generally a numeric domain, either continuous
or discrete but typically large) is approximated by a set of intervals. Each such
set of intervals can be seen as an element of a non-standard domain Dα, called
an abstract domain, which is usually a complete lattice. Dα is then the set that
contains all the admissible sets of intervals. We consider two monotonic map-
pings (i.e., mappings f which satisfy x ⊆ y ⇒ f(x) ⊆ f(y)) which relate the
concrete and abstract domains and which are called abstraction α : D 7→ Dα,
and concretization γ : Dα 7→ D (see Figure 1). Given a set of values v in D
the abstraction function α(v) returns the corresponding (minimal) set of inter-
vals. Conversely, given a set of intervals (an element i of Dα), the concretization
function γ(i) returns a (possibly infinite) set of concrete values from D.

Also, for each component operation op which operates on elements of D
(e.g., +, ∗,...) an abstract counterpart opα (+α, ∗α,...) is defined that operates
on the corresponding sets of intervals in Dα. These abstract operations +α,
∗α,... are the standard interval arithmetic operations, augmented to operate on
sets of intervals. A function is then computed or approximated by replacing
the operators in the program by their abstract counterparts and applying the
resulting abstract function to sets of inputs at a time, such sets being represented
as sets of intervals. In order to reason about the correctness of this process,
partial order relations are considered in the concrete and abstract domains:
〈D,⊆〉 and 〈Dα,v〉. The definition of v is induced by ⊆ (set inclusion in D)
and α such that ∀i, i′ ∈ Dα : i v i′ ⇔ γ(i) ⊆ γ(i′), i.e., a set of intervals i is
“smaller” than another set of intervals i′ if it corresponds to fewer values in D.

The standard interval operations (+α, ∗α, ...) do verify two important proper-
ties. The first one is that they compute safe approximations, i.e., given two sets of
concrete values a and b, then a+b ⊆ γ(α(a)+αα(b)) (where by a+b we mean the
set of results of pairwise adding all elements of a and b), a ∗ b ⊆ γ(α(a) ∗α α(b)),
etc. I.e., it is guaranteed that the intervals which are result of an operation con-
tain all possible values that can be obtained from the operation of values from
the interval operands. However, these operations are not completely precise in
the sense that if there are data dependencies between the operands (e.g., due
to variables appearing more than once in the computation), the interval result
is not guaranteed to be the minimum interval that contains all possible output
values (i.e. data dependencies are only considered at the interval level, not at
the level of individual values) [12, 9].
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Regarding the second property, consider representing the intervals corre-
sponding to the operands of abstract operations as sets of disjoint subintervals,
i.e., consider a new abstraction function α′ which represents an operand a in-
stead of by i = α(a) by another element i′ = α′(a) (i, i′ ∈ Dα) composed of
disjoint subintervals of i (note that then γ(i) = γ(i′)). Now consider generalized
versions of the interval operations +α′ , ∗α′ ,... which operate such sets by com-
puting their Cartesian product and merge the results in a single interval. Then
α(a) +α′ α(b) v α(a) +α α(b), α(a) ∗α′ α(b) v α(a) ∗α α(b), etc. I.e., the results
of the operations on subintervals are included in the intervals obtained from op-
erating the original interval operands: the accuracy of the output can increase.
This is because there is less loss of precision in the abstract operations due to
the fact that data dependencies are considered in greater detail [12, 14]. In the
limit, assigning one subinterval to each possible value of each operand would
yield an exact interval result in all cases, e.g., a ∗ b = γ(αlimit(a) ∗α αlimit(b)).

The two properties above allow defining abstractions based on predefined
partitioning strategies, which will be referred to as grids. Such grids are analytic
partitions of the numeric ranges of interest that force a specific representation,
and are the basis for the definitions of new abstract domains and abstraction
functions. Furthermore, it is possible to associate a value (e.g., a probability)
with each element of the abstract domain associated with a given grid, resulting
in the notion of histogram grids and the definitions of interval operations on such
grids. This allows the application of this class of abstractions to probabilistic
characterization of functions.

The application of interval methods to perform operations on probability den-
sity functions (PDFs) represented as histograms has been previously suggested
(for detailed references see [4]). The standard interval data type is extended with
a probability mass distributed inside the interval to form a histogram bar (called
interval or bar in the following). This model does not provide information about
the probability distributions inside the bars so only verifiable bounds on the out-
put cumulative distribution functions (CDFs) can be obtained [4]. A common
approximation to avoid this problem and obtain estimates of the output PFDs
is to assume that the distributions inside the bars are always uniform [7]. This
is justified by the second property above as long as discrete values are used (we
consider integers) because, in the limit, the distribution of a probability mass
inside an interval containing a single value is uniform.

The uniformity approximation allows using interval analysis for probabilistic
(quantitative) function characterization. In fact, interval methods have been de-
scribed as having more advantages than traditional random sampling approaches
(i.e. Monte Carlo simulation) [10, 4]. Exhaustive exploration of the input data
space is possible when represented in terms of intervals but, in general, it is
infeasible when considering individual numeric values. Therefore, from the first
property above, interval computations can provide safe bounds for the output
distributions, while Monte Carlo approaches (based on partial random simula-
tion of the input data space) cannot guarantee that the worst case scenario is
actually considered in the results.
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Two problems appear when applying intervals to PDF estimation. First, the
computation of the Cartesian product of input histogram bars yields a set of
output bars that must be merged into a single output histogram. However, the
complexity of this merging can increase to infeasible levels (merging two intervals
with non-empty intersection produces three smaller intervals, so every new merge
is bound to deal with more intersections as computation progresses). Second, it
has been argued that assuming uniform distributions inside the histogram bars
can be a problem with some operations that significantly increase the size of the
output interval but causing sparse distributions (i.e. integer multiplication).

Approaches based on the definition of grids have been proposed to minimize
these problems and, in general, to control the accuracy of the enclosures (and
PDFs) obtained through interval computations [7, 5, 6]. Histogram grids by forc-
ing a specific representation on input and output histograms, allow controlling
the sizes of their bars. However, the computation is typically still performed in
terms of standard interval arithmetic.

In this paper, we introduce an alternative arithmetic (i.e., alternative ab-
stract operations) to evaluate the effect of taking grids into consideration also
during the computation. This arithmetic directly produces the histogram repre-
sentation of an interval result in terms of the same grid used to represent the
input intervals. This approach provides a more accurate probabilistic description
of the operation result and thus allows increased accuracy in the output PDFs.

In the following sections, the notion of abstraction using grids is introduced
as well as the corresponding abstract interval operations. Then, the notion of in-
terval is generalized to that of a histogram bar, and the notion of histogram grids
is presented, applied to the particular case of PDF computation. Then a new
arithmetic, with operators based on a specific grid, and its computation model
are presented. Finally, the new approach is compared to the case of performing
computation using standard interval arithmetic (in terms of accuracy and com-
putation times) when applied to a simple sequence of computations including
data dependencies. Finally, the main conclusions are summarized.

2 Using Interval Grids as Abstractions

The definition of the abstract domain Dα is based on the so-called grids which
are abstractions based on intervals.

Definition 1. An interval [a, b] is the set of N = (b − a + 1) integers x that
verify a ≤ x ≤ b.

Definition 2. A grid G is a partition of the concrete domain D in terms of
intervals Ii: G = {Ii| ∪∀i Ii = D,∩∀iIi = ∅}.

Grids can be defined by hand by the user or described through analytic mod-
els. Here, we consider analytic grids parameterized by a type, which determines
their formal description, and a granularity (g), which determines the size of its
intervals. In particular, the following two types are considered.
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Definition 3. A linear grid with granularity g is the set of adjacent intervals
[A, B], each of them uniquely identified by integer n, that verify one of the fol-
lowing identities:

[A, B] =




[gn + 1, g(n + 1)] (n < −1)
[−g + 1,−1] (n = −1)
[0, 0] (n = 0)
[1, g − 1] (n = 1)
[g(n− 1), gn− 1] (n > 1)

Definition 4. A geometric grid with granularity g is the set of adjacent inter-
vals [A, B], each of them uniquely identified by integer n, that verify one of the
following identities:

[A, B] =




[−g−n + 1,−g−(n+1)
]

(n < 0)
[0, 0] (n = 0)[
g(n−1), gn − 1

]
(n > 0)

In both definitions, integer n is called the level of the corresponding interval
in the grid. In linear grids intervals are of equal size (except around the center),
while in geometric grids interval size increases exponentially away from the ori-
gin. More complex grid models can be found in [5] where the center of symmetry
of the grid can be moved from the origin to any other value.

Let’s consider the set I of all possible intervals of D. In this situation, the
set

IG = {i|i ∈ I, i ≤ j, j ∈ G}

where ≤ represents interval inclusion, is the set of all possible intervals allowed
by a grid G, and the abstract domain induced by a grid G, Dα,G is defined by
2IG , i.e., it contains all the sets of possible intervals allowed by the grid. Given
a set of concrete values V , an abstraction function can be associated with the
grid which returns the abstract value corresponding to V in Dα,G.

Definition 5 (αG(V )). The abstraction function associated with a grid G,
αG(V ) is defined as:

αG(V ) = {Vα|Vα ∈ Dα,G, ∀v ∈ V, ∃∗Vα/v ∈ Vα 6 ∃v′α ∈ Vα, v′α v vα}

This means that all concrete values in the same grid interval are represented
by a single element of the abstract domain. For example, the set of integers
{0, 1, 3, 4, 6} ⊂ D is represented in terms of a linear grid with g = 4 as the set
{[0, 0], [1, 3], [4, 6]} ⊂ Dα,lin(4), or in terms of a geometric grid with g = 2 as the
set {[0, 0], [1, 1], [3, 3], [4, 6]} ⊂ Dα,geo(2).

Standard definitions of operations between intervals are used as abstract
operations for the computation [12, 14]. For example, in the case of positive
intervals (those with both endpoints > 0):
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[x1, x2] + [y1, y2] = [x1 + y1, x2 + y2]
[x1, x2]− [y1, y2] = [x1 − y2, x2 − y1]
[x1, x2]× [y1, y2] = [x1 × y1, x2 × y2]
[x1, x2] / [y1, y2] = [x1/y2, x2/y1]

As an example of how the use of grids can improve accuracy consider the
operation [2, 4]∗ [8, 9] which results using standard interval arithmetic in [16, 36].
If a geometric grid with g = 2 is applied the interval [2, 4] becomes [2, 3], [4, 4]
and thus the operation yields [16, 27], [32, 36].

It should be noted that linear grids are better suited for sequences of additions
and subtractions while geometric grids allow large reductions in the size of the
input space and compensate for the range expansion produced by multiplications
and exponentiations, at the cost of coarser intervals away from the origin.

3 Using Interval Histogram Grids as Abstractions

We now generalize the notion of interval by associating a weight with each such
interval. In particular, and given the intended application to PDF computation,
probabilities are assigned to intervals:

Definition 6. An interval [a, b]/p is the set of N = (b− a + 1) integers x that
verify a ≤ x ≤ b with an associated probability mass p.

It is assumed that p is uniformly distributed in [a, b], so that the probability
of any x ∈ [a, b] can be computed as p/N . In this situation, a histogram is simply
described as a set (ordered list) of disjoint generalized intervals. This assumption
allows simplifying the computation model. The impact depends on the type of
grid and the granularity selected. In the limit, if each interval contains a single
integer value, probabilities are indeed uniform.

The grid-based approach for PDF estimation was partially introduced in
[7] and later developed in [5, 6]. In particular, the representation of a generic
histogram in terms of a given grid is governed by two rules:

– Merge rule: all intervals of the histogram occurring inside the same interval
of the grid are represented as a single interval with probabilities added.

– Split rule: any interval of the histogram spanning over several intervals of the
grid is decomposed into as many intervals with proportional probabilities
before applying the merge rule.

These two rules are the key to controlling the number of bars in a histogram
through the appropriate selection of a grid. They can be used to reduce the
impact of the problems outlined in the previous section: the merging process that
occurs when collecting output intervals in global histograms, and the uniformity
assumption in large intervals obtained after operations causing sparse output
distributions. Besides, they provide a formal mechanism to control the size of
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the interval input space (the Cartesian product of input bars) and, consequently,
the estimation time.

Although this interval method of representation may suggest some resem-
blance to Latin Hypercube Sampling (LHS) as used in approaches based on
Monte Carlo simulation, they are not related in any way as the interval method is
based on a different computation model with different data types (i.e. intervals).
(LHS divides the range of each of the k input variables into n non-overlapping
intervals, randomly selects n values -one value from each interval- for each of
the k variables, and combines them randomly into n k-tuplets which are used as
input vectors for the simulation. While LHS reduces the number of samples for
a given accuracy, they are much harder to compute so, in general, it has only a
limited advantage with respect to standard Monte Carlo sampling [13, 15]).

Once grids have been selected for input and output representation, the his-
togram computation model is adapted from [4] as:

1. Consider the input space N1 × . . . × NI where Ni is the set of intervals
describing the histogram of input i in terms of a selected grid.

2. For each vector (. . . , [aij , bij ]/pij , . . .) of the input space, where [aij , bij ]/pij

represents the j-th bar of the histogram describing input i:
(a) Compute its probability P =

∏I
i=1 pij .

(b) Execute the operations using interval arithmetic.
(c) Assign P to each resulting interval.
(d) Collect the results in output histograms described in terms of selected

grids applying the split and merge rules.

When considering a sequence of arithmetic operations, the use of grids allows
controlling the size of the intervals in each input vector (. . . , [aij , bij ]/pij , . . .).
However, the size of the interval(s) obtained after the computation (before ap-
plying the output grid) is determined by the type of operations in the sequence.
Therefore, the approximation of assuming uniform distributions inside the in-
tervals worsens if large intervals representing sparse distributions are obtained.
The impact of this uniformity approximation is controlled through the value
of P which is indirectly determined by the grid (finer grids reduce the impact
but require longer computation times). However, it remains to be seen if using
grid-based operators can provide advantages over using more detailed grids.

4 Grid-Based Histogram Arithmetic

In the following sections, alternative arithmetic operators based on a specific
grid are derived. The objective is to evaluate their impact in the estimation
process. In particular, a geometric grid with g = 2, called G in the following, is
considered. The choice of a geometric grid is simply due to the fact that it is
more interesting and novel than a linear one. A granularity value of 2 is the most
appropriate for the ranges of values being considered in the examples. Larger
granularities are useful for larger value ranges. A generalization of these models
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for other grids is out of the scope of this study, although it should be fairly easy
in the case of geometric grids.

Assuming interval operands represented according to G the new operators
return the result of the operation also represented in terms of G. When this
result includes more than one interval (in general, it is an histogram), the oper-
ator distributes the probability P among the output intervals according to the
behavior of the specific arithmetic operation. (In order to have consistent in-
put and output data types, this new arithmetic can be formulated as histogram
arithmetic, as inputs can be viewed as histograms having a single interval).

From the previous description, the input of any intermediate operation in
any run of the computation is an histogram. In this situation, the computation
model of the previous section is modified as:

1. Consider the input space N1 × . . . × NI where Ni is the set of intervals
describing the histogram of input i in terms of G.

2. For each vector (. . . , [aij , bij ]/pij, . . .) of the input space:
(a) Compute the probability P =

∏I
i=1 pij .

(b) Transform each [aij , bij ]/pij into a histogram with a single bar [aij , bij ]/1.
(c) For each operation with input histograms Hk (with one or several inter-

vals), and for each combination of intervals from the Cartesian product
of the intervals of histograms Hk::
i. Represent each interval as a single-bar histogram.
ii. Obtain a histogram result using G-based histogram arithmetic.
iii. Proceed with the next operation, if any (step c). Then return.
iv. Multiply the probability of each resulting histogram interval by P .
v. Collect the result histogram in an output histogram in terms of G.

This computation model is much more complex because a tree of histograms
is generated from each input vector (. . . , [aij , bij ]/pij , . . .). Of course, there is
a risk of a combinatorial explosion in the number of histograms produced, and
grid-based operators should be carefully used. The theorems presented in the
following sections provide hints on the conditions to avoid this problem by setting
bounds on the number of intervals generated by the operations.

4.1 Addition/Subtraction Model

Subtractions are treated as particular cases of additions by considering that if
[a, b] is an interval at level l, −[a, b] = [−b,−a] is at level −l.

Two interval operands [a1, a2]/pa and [b1, b2]/pb at levels la and lb of G (ge-
ometric grid with g = 2), containing Na and Nb integers respectively, are con-
sidered. When they are added, the endpoints of the output range are computed
as [c1, c2] = [a1 + b1, a2 + b2] (from standard interval arithmetic).
Theorem 1. The addition of two intervals A and B at positive levels la and lb
of G produces at most two intervals at levels max{la, lb} and (max{la, lb}+ 1).
Proof. Considering the largest intervals at levels la and lb and the endpoints at
levels max{la, lb} and (max{la, lb}+ 1),

A + B = [2la−1 + 2lb−1, 2la + 2lb − 2] ⊂ [2max{la,lb}−1, 2max{la,lb}+1 − 1]
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Fig. 2. Relative positions between a grid interval and the distribution of results
in the addition of intervals with uniform density functions
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Fig. 3. Exact and G-based density functions of [−7,−4]/1 + [9, 14]/1

Assuming uniform distributions in the operands, the distribution of the
M = NaNb integer results or occurrences in [c1, c2] has the general shape of a
trapezoid, with a height h = min{Na, Nb}, and corners c1, c2, w1 = (c1 +h− 1),
and w2 = (c2−h+1) (see Figure 2). The number of occurrences m of any value
x ∈ [c1, c2] can be obtained as:

m =




x− c1 + 1 c1 ≤ x < w1

h w1 ≤ x ≤ w2

c2 − x + 1 w2 < x ≤ c2

As [c1, c2] must be described in terms of G, in general, it becomes a set of
intervals (histogram) with probabilities proportional to the previous distribu-
tion of occurrences. These probabilities are obtained from analyzing the possible
positions of a grid interval with respect to the three sections of the distribution
above (Figure 2).

Definition 7. The G-based addition of two intervals [a1, a2]/pa and [b1, b2]/pb

with Na and Nb integers respectively, produces the set of intervals described by{
[c1, c2] /papb if l1 = l2[
c1, 2l1 − 1

]
/pl1 ,

⋃l2−1
i=l1+1[2

i−1, 2i − 1]/pi,
[
2l2−1, c2

]
pl2 if l1 6= l2

where l1 is the level including c1 = a1 + b1, and l2 is the level including c2 =
a2+b2. When l1 6= l2, for each interval [x1, x2]/px of the set, px = papbMx/NaNb

with Mx obtained as
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Fig. 4. Area approximation

Mx =




(x1 + x2 − 2c1 + 2)(x2 − x1 + 1)/2 x2 < w1

(w1 + x1 − 2c1 + 1)(w1 − x1)/2 + (x2 −w1 + 1)h x1 < w1, w1 ≤ x2 ≤ w2

(w1 + x1 − 2c1 + 1)(w1 − x1)/2 + (w2 − w1 + 1)h+
+(2c2 − w2 − x2 + 1)(x2 −w2)/2 x1 < w1, x2 > w2

h(x2 − x1 + 1) w1 ≤ x1 ≤ w2, x2 ≤ w2

(w2 − x1 + 1)h + (2c2 − w2 − x2 + 1)(x2 − w2)/2 w1 ≤ x1 ≤ w2, x2 > w2

(2c2 − x1 − x2 + 2)(x2 − x1 + 1)/2 x1 > w2

As an example, Figure 3 represents the output distribution of the addition
[−7,−4]/1+[9, 14]/1. The plot on the left is the exact density function. The plot
on the right is obtained with the G-based operator. It should be noted that if
standard interval arithmetic is applied, a uniform distribution (at p(x) = 0.111)
in [2, 10] is obtained.

4.2 Multiplication and Division Models

Multiplication produces, in general, sparse distributions of results in wide ranges.
So interval results contain values that cannot be obtained from the correspond-
ing integer multiplication. (Only positive intervals are considered here as sign
computation can be performed independently).

Theorem 2. The product of two intervals A and B at levels la and lb of G,
produces at most two intervals at levels (la + lb − 1) and (la + lb).
Proof. Considering the largest intervals at levels la and lb and the endpoints at
levels (la + lb − 1) and (la + lb), and applying standard interval arithmetic

A×B = [2la+lb−2, 2la+lb − 2la − 2lb + 1] ⊂ [2la+lb−2, 2la+lb − 1]

The model of the G-based interval multiplication is based on a computation
in the concrete domain. Considering the region defined by x ∈ [a1r, a2r] = [a1 −
0.5, a2+0.5] and y ∈ [b1r, b2r] = [b1−0.5, b2+0.5], the number of products below
a value K can be approximated by the area below the curve xy = K included in
the previous region. From the previous theorem, a value K = 2la+lb−1 separates
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the products that belong to each of the two output intervals. An approximation
of the number of occurrences in the lower output interval can be obtained as:

A =
∫ x2

x1

(
K

x

)
dx − C = K ln

(
x2

x1

)
− C

As shown by some examples in Figure 4, it is an approximation because this
expression provides the real area below the curve, instead of the number of
unit squares corresponding to integer occurrences. (A more sophisticated model
accounting for long tails that do not include unit squares is used in the imple-
mentation to reduce the impact of the approximation). The values of x1, x2 and
C are obtained from analyzing the possible positions of the curve xy = K with
respect to the rectangle defined by the ranges of x and y. These positions are
represented in Figure 5.

Definition 8. The G-based multiplication of two intervals, [a1, a2]/pa and
[b1, b2]/pb at levels la and lb and with Na and Nb integers respectively, produces
the intervals{

[c1, 2la+lb−1 − 1]/p, [2la+lb−1, c2]/papb − p if c1 < 2la+lb−1 ≤ c2

[c1, c2] /papb else

where c1 = a1b1, c2 = a2b2, K = 2la+lb−1, p =
(

papb

NaNb

) (
K ln

(
x2
x1

)
− C

)
, and

x1 =
{

a1r

K/b2r

K ≤ a1rb2r

K > a1rb2r

x2 =
{

a2r

K/b1r

K > a2rb1r

K ≤ a2rb1r

C =
{

b1r(x2 − x1)
b1r(x2 − x1)−Nb(x1 − a1r)

K ≤ a1rb2r

K > a1rb2r

The model for division is based on similar ideas. In this case, it is assumed
that the endpoints of the denominator cannot be 0.
Theorem 3. The division of two intervals A and B at levels la and lb of G,
produces at most two intervals at levels (la − lb) and (la − lb + 1).
Proof. Considering the largest intervals at levels la and lb and the endpoints at
levels (la − lb) and (la − lb + 1), and applying standard interval arithmetic

A/B = [2la−1/2lb − 1, 2la − 1/2lb−1] ⊂ [2la−lb−1, 2la−lb+1]
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Fig. 6. Exact and G-based density functions of [4, 6]/1× [8, 15]/1

The curve to be considered in this case for the area computation is x/y = K
with K = 2la−lb , so

A =
∫ x2

x1

( x

K

)
dx− C =

x2
2 − x2

1

2K
− C (1)

Definition 9. The G-based division of two intervals, [a1, a2]/pa and [b1, b2]/pb

at levels la and lb and with Na and Nb integers respectively, produces the intervals


[0, 0] /papb if la < lb[
c1, 2la−lb − 1

]
/papb − p,

[
2la−lb , c2

]
/p if la ≥ lb, c1 < 2la−lb ≤ c2

[c1, c2] /papb else

where c1 = a1/b2, c2 = a2/b1, K = 2la−lb , p =
(

papb

NaNb

)(
x2
2−x2

1
2K − C

)
, and

x1 =
{

a1r

b1rK
K ≤ a1r/b1r

K > a1r/b1r

x2 =
{

a2r

b2rK
K > a2r/b2r

K ≤ a2r/b2r

C =
{

b1r(x2 − x1)
b1r(x2 − x1)−Nb(a2r − x2)

K > a2r/b2r

K ≤ a2r/b2r

As an example, exact and G-based plots are represented in Figure 6 for
the multiplication [4, 6]/1 × [8, 15]/1. The uniform distribution obtained from
standard interval arithmetic has a constant density at p(x) = 0.017.

5 Example of a Computation

Although it is clear that individual G-based operators are more accurate than
standard interval operators, it is also important to characterize their behavior
when considering sequences of operations (implying data dependencies). For this
purpose, the following example of computation is considered (from the reliability
estimation of a robot arm joint [6]):

j = sa × sb + m− sa × sb ×m
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where sa and sb are sensor probabilities of failure described by the left plot of
Figure 7, and m is a motor probability of failure represented in the plot on the
right of Figure 7.
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Fig. 7. Probability density functions of sa and sb (left), and m (right)

It can be observed that in order to apply the estimation approaches presented
here it is required to scale the data (and the computation) for a description in the
integer domain. In particular, probabilities of failure with two fractional digits
are considered, thus requiring a scaling by 100. For more details, see [6]. (Such
scaling is undone in the representation of the computation results).

The plots in figures 8 to 11 represent the density functions of j obtained
from four different computational approaches. In each figure, the plot on the left
corresponds to the result of the approach represented by merging exactly all the
individual results (in general, the intersection of two individual results produces
three output bars). The plot on the right is the representation of the same result
when an output grid G (geometric with g = 2) is used to collects the results.

Figure 8 displays the exact output density functions obtained from the ex-
haustive exploration of the 106 vectors of the input space (considering integers).
Note that the ”small” size of the problem allows obtaining this exact result, in
general unknown, and that the peak around 0.5 cannot be totally represented
when using G.

The plots in Figure 9 are obtained by using standard interval computations
on the intervals of histograms in Figure 7. Again, collection times, as previously
explained, do not become prohibitive due to the small size of the problem. In
this case, data dependencies are taken into account at a coarse level of detail
(large input intervals), so the approximation is poor and the results merely show
the peak around 0.5.

The results obtained applying an input grid G with standard interval arith-
metic are represented in Figure 10. The approximation is much better than
without grids. The two peaks of the PDF are clearly seen. However, when repre-
sented in terms of G, probability masses do not distribute as in the exact PDF
(the second peak appears displaced around the value 0.25).

Finally, Figure 11 contains the plots computed using G-based arithmetic,
which also implies an input grid G. Once again, results are improved, as both
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Fig. 9. PDF of j computed with intervals but without grids

peaks are reflected in the plots but, in this case, the second peak appears around
0.4, so the representation in terms of G is the best of the three approximations.

Table 1 contains some statistics from the four computations, including the
number of operations performed (Size), the computation time in msec. (Time),
the number of intervals saved to disk after the computation (Memory. This num-
ber also includes intervals describing the inputs and intermediate variables), and
the error in the result. This error is obtained by comparing the representations
in terms of G. It is a weighted percentage of the exact distribution computed as

Error(%) = 100×
∑
∀bars

| Exact−Approx |
2× Exact

where Exact is the probability of a bar in the exact distribution and Approx is
the probability of the corresponding bar in the approximate distribution. The
factor 2 accounts for the fact that each misplaced results causes a difference in
the distributions of twice its probability.

The table shows several interesting results. Clearly, exhaustive integer explo-
ration of the input space (first two rows) would be infeasible in larger examples,
as the computation time is a function of the input space size. The impact of col-
lection times can be observed by comparing results with and without an output
grid. Using no output grid causes a significant increase in the total time even
though this is a small example with a limited number of output values (100).

Errors confirm the qualitative analysis of the plots previously made. The im-
provement achieved with G-based operators is at the cost of longer (but accept-
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Fig. 10. PDF of j computed with an input grid G and standard interval arith-
metic
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Fig. 11. PDF of j computed with grid-based arithmetic (input grid G is implied)

able) computation times. As previously mentioned, this cost can increase signifi-
cantly in larger examples as the computation with G-based operators can gener-
ate many more intermediate results than standard interval operators. However,
the theorems from the previous section seem to anticipate moderately longer
computation times when using operators based on grids like the one used here
(geometric with g = 2), as most interval operations are proven to generate at
most two output intervals.

6 Conclusions

In this paper, after introducing grids as abstractions with the objective of im-
proving the precision of interval computations, a new set of approximate arith-
metic operators for probabilistic characterization of functions has been pre-
sented. The new operators bring grids into the behavior of the operators them-
selves. Results from operators developed for a particular grid show that this
approach provides the ability to control the accuracy and computation times of
the estimation process at a different level than approaches based on grids for in-
put and output representation. The new approach reduces the error of the PDF
estimates at the cost of longer computation times. The results from a particular
example show that this is a moderate increase, although this can be different in
other examples with different grids and data sets.
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Input Computation Output Size Time Memory Error (%)

integer integer no grid 6181806 2773459 20844 -
integer integer geometric(2) 6181806 2297749 10651 0

no grid no grid no grid 750 490 739 -
no grid no grid geometric(2) 750 240 602 17.42

geometric(2) no grid no grid 3072 1640 1159 -
geometric(2) no grid geometric (2) 3072 820 642 6.55

geometric(2) geometric(2) no grid 3072 2120 1490 -
geometric(2) geometric(2) geometric(2) 3072 1260 642 3.94

Table 1. Statistics from the Computation

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. AP, NY,
1983.

[2] APIC’95. International Workshop on Applications of Interval Computations, El
Paso, Texas, February 1995.

[3] Frédéric Benhamou, David McAllester, and Pascal Van Hentenryck.
CLP(Intervals) Revisited. In Proceedings of ILPS’94, pages 1–21, Ithaca,
NY, USA, 1994. MIT Press.

[4] D. Berleant. Automatically Verified Reasoning with Both Intervals and Probabil-
ity Density Functions. Interval Computations, 1993(2):48–70, 1993.

[5] C. Carreras, J.A. López, and O. Nieto-Taladriz. Bit-width Selection in Data-
path Implementations. In Proc. 12th IEEE International Symposium on System
Synthesis, pages 114–119, San Jose, CA, Nov 1999.

[6] C. Carreras and I.D. Walker. Interval Methods for Improved Robot Reliability
Estimation. In Proc. IEEE Annual Reliability and Maintainability Symposium,
RAMS 2000, Los Angeles, CA, Jan 2000.

[7] C. Carreras, I.D. Walker, O. Nieto-Taladriz, and J.R. Cavallaro. Robot Reliability
Estimation Using Interval Methods. In Proc. MISC’99 International Workshop on
Applications of Interval Analysis to Systems and Control, pages 371–385, Girona,
Spain, Feb 1999.

[8] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principles of Programming Languages, pages 238–
252, 1977.

[9] Eero Hyvonen. Evaluation of Cascaded Interval Functions. In Proceedings of
Intervational Workshop on Constrain-Based Reasoning, 8th Florida AI Research
Symposium, April 1995.

[10] Janne Pesonen et al. Interval Approach Challenges Monte Carlo Simulation. In
Proceedings of Scientific Computing, Computer Arithmetic and Validated Numer-
ics (SCAN-95), 1995.

[11] Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction.
The MIT Press, 1998.

[12] R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia,
1979.



Grid-Based Histogram Arithmetic for the Probabilistic Analysis of Functions 123

[13] W.H. Press, S.A. Teukolsky, W.T.Vetterling, and B.P. Flannery. Numerical
Recipes in FORTRAN: The Art of Scientific Computing. Cambridge Univ. Press,
New York, 1992.

[14] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Ellis-
Horwood, Chichester, 1988.

[15] C.N. Zeeb and P.J. Burns. A Comparison of Failure Probability Estimates by
Monte Carlo Sampling and Latin HyperCube Sampling, 1998.



Approximating Data in Constraint Databases�

Rui Chen, Min Ouyang, and Peter Z. Revesz

Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract. Approximate representation of any spatio-temporal variable,
by some interpolation function, is necessary when it is measured only
sporadically. This paper argues that the approximate representation can
be captured by a constraint database. Since constraint databases can be
queried via standard query languages – such as relational algebra, SQL
and Datalog – this provides an immediate benefit for flexible querying
of the data. We propose a concrete system that implements a version of
this approach. We also add beyond the standard queries new ones like
cartogram similarity queries and an advanced graphical user interface
with 3-D animation of GIS-based data.

1 Introduction

Many databases contain (spatio)temporal data that change continuously with
time but are measured and recorded only sporadically. For example, population
and various other census data in the United States is recorded only every ten
years. Different weather and environmental stations throughout the world may
be measuring and reporting data like air temperature, precipitation, wind di-
rection, wind speed and levels of different air or water pollutants with different
frequencies and regularities.

It is obvious that all these spatio-temporal data cannot be available for all
locations at all times. If we are interested in the value of a spatio-temporal
variable at a particular time, then we have to somehow approximate that value
based on some interpolation from the available data.

The interpolation could be done at two different levels. One approach is to
represent the measured data in a standard relational database. Then the rela-
tional database can be embedded in a high-level computer program that retrieves
the measurements, interpolates them and does other calculations. This approach
may be a workable one for some scientists who are advanced programmer or who
have such help readily available. It is not feasible for average users.

An alternative approach, that we advocate in this paper, is to perform the
interpolation at the time of the data entry, that is, the data should be stored as a
constraint database [7,11,16], where the constraints are parametric functions of
time that interpolate the data. This approach is advantageous because it is pos-
sible to build powerful database systems (for example, CCUBE [1], DEDALE [6]
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by a Gallup Research Professorship.

B.Y. Choueiry and T. Walsh (Eds.): SARA2000, LNAI 1864, pp. 124–143, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Approximating Data in Constraint Databases 125

and MLPQ [15]) that can be queried by standard relational database query
languages, such as relational algebra, SQL and Datalog. Also, the enhanced
MLPQ [14] has the ability to display the results with color bands according to
the associated attribute values. This enables a potentially much wider range of
users to use the database.

Applications of constraint database systems were until now severely limited
to a few well-understood areas of constraint representation, for example, GIS
where convex polygonal areas were represented as conjunctions of linear inequal-
ity, i.e., half-plane intersection, constraints. Our work on interpolation functions
as a natural source of constraint data opens up a range of uses of constraint
databases beside these narrow focus applications.

It is very important to present the data to a user in a form that is easily
understandable. Many current constraint database systems have a poor graphical
user interface. Probably MLPQ/GIS [8] has the most advanced user interface
that allows a number of iconic queries, including the option to ask the system
to show an animation of a 2-D object (a moving polygon).

In this paper, we describe an advanced GIS-oriented user interface that can
animate in 3-D various spatio-temporal variables (distributed over spatial cells,
for example, the U.S. states). Such an animation has a potential to reveal many
interesting features to a user that would be hard or impossible to notice oth-
erwise. The user interface also allows a number of new queries. For example,
we define similarity queries over cartograms. A similarity query could be for in-
stance the following: given a precipitation map of the United States for March
2000, find among all the other monthly precipitation maps in the past 40 years
those where the precipitation was most similar to the given map.

The rest of the paper is structured as follows. Section 2 describes the al-
gorithms for data input and transformation. Section 3 presents the algorithms
for the update on piecewise linear functions. Section 4 introduces several kinds
of algebraic operators and queries. Section 5 discusses 3-D animation. Finally,
Section 6 concludes with some possible directions for future works.

2 Data Input and Transformation

In this section we describe how the input data of measurements can be trans-
formed into a constraint database representation by using various interpolation
functions. In particular, we present a transformation method in Section 2.1 based
on a linear interpolation function.

We also analyse the correlation between the interpolation function obtained
by this method and the original data using as a test case the data obtained from
the National Climatic Data Center. The correlation depends on the values of
two parameters: the average error threshold and the maximum error threshold,
denoted by Φ and Ψ , respectively. In general, the lower Φ and Ψ are the better
the correlation is with the original data but the piecewise linear interpolation
function will need more pieces. Hence these parameters allow the user to control
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the trade-off between the accuracy of the approximation and the required storage
space.

2.1 The Piecewise Linear Function Transformation Method

Given a set of spatiotemporal data, where the third dimension (called z later)
could stand for any property associated with that point, this section will show
how to transform a sequence of z values into a piecewise linear function for each
spatial point.

Example 1. Suppose there are four weather stations 1 to 4 located in (10, 20),
(20, 40), (50, 25) and (30, 10) respectively as shown in Table 1, where SN stands
for station number and X,Y the coordinates of the location. Each station has
a group of temperature data at five corresponding different moments as shown
in Table 2, where t1 to t5 columns are the temperatures at the time t1 to t5
respectively.

SN X Y

1 10 20
2 20 40
3 50 25
4 30 10

Table 1. The locations of four weather stations

SN t1 t2 t3 t4 t5
1 75 77 86 87 90
2 70 72 75 80 85
3 80 86 81 80 78
4 85 83 81 78 76

Table 2. The temperatures of the four weather stations

Table 1 stores the spatial information while Table 2 stores the z values related
to time. In Example 1 z represents the temperature. For simplicity, we name the
data in Table 1 spatial data set and in Table 2 temporal data set.

A piecewise linear function is a set of linear functions with only one param-
eter, the time t. For each linear function, the domain of t is constrained within
a definite extent, which is non-overlapping with the extents of other linear func-
tions. The following description expresses the idea of the transformation: try to
include as many points as possible into one piecewise linear function without
exceeding the prescribed approximation error thresholds.
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Suppose there are n > 1 time-value pairs for a given point:

(t1, z1), (t2, z2), ..., (tn, zn),

where t1, t2, ..., tn stand for the points of time, z1, z2, ..., zn the corresponding z
values, and t1, t2, ..., tn are all distinct and in an increasing order.

For any two pairs (tb, zb) and (te, ze) the linear function can be expressed as
Formula (1).

Definition 1. A piece linear function zb,e is the function:

zb,e(t) =
ze − zb

te − tb
(t− tb) + zb (1)

where tb and te are the lower and the upper bounds of the time interval adapted
to this function, i.e. tb ≤ t ≤ te.

We use two parameters to restrict the two kinds of interpolation errors re-
sulted from Formula (1).

1. Average Error Threshold Φ for Each Piece: We use the average error
threshold (denoted by Φ) to control the average approximation error for each
piece of the piecewise linear function.
The average error for each piece (denoted by φ) is defined in Formula (2).

φb,e =
(
Σe−1

i=b+1 |zb,e(ti)− zi|
)
/(te − tb) (2)

2. Maximum Error Threshold Ψ for Each Time Point: We use the max-
imum error threshold (denoted by Ψ) to control the approximation error for
each time point.
The error for each time point (denoted by ψ) is defined in Formula (3).

ψb,e(ti) = |zb,e(ti)− zi| (3)

This leads to the following simple transformation algorithm with the use of
the two interpolation error thresholds Φ and Ψ .

———————————————————————————————————

PIECEWISE LINEAR INTERPOLATION ALGORITHM:

Input: A temporal data set with n time-value pairs (t1, z1), . . . , (tn, zn).
Φ the average error threshold, and
Ψ the maximum error threshold in the approximation.

Output: A piecewise linear function.
Local Vars: The b and e are integer variables that denote if the piecewise linear

interpolation function should interpolate by one piece the sequence
of temporal data (tb, zb), . . . , (te, ze).
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The one error, total error, and max error correspond to the
approximation error for a time point, the total approximation
error for one piece and the maximum approximation error in one
piece, respectively.

Initialize b := 1, e := 2
while e ≤ n do

Initialize one error := 0, total error := 0, and max error := 0
repeat

for i := b+ 1 to e− 1 do
one error := ψb,e(ti)
total error := total error + one error
max error := max(max error, one error)

end-for
e := e+ 1

until total error
te−tb

> Φ or max error > Ψ or e > n

Add to the piecewise linear function the piece zb,e−1 defined by Formula (1)
with the current values of b and e− 1 with the time interval from tb to te−1.
If b = 1, set the left boundary of the time interval −∞; if e− 1 = n, set the
right boundary of the time interval +∞.

b := e− 1
end-while

———————————————————————————————————

Lemma 1 The piecewise linear interpolation algorithm transforms the given
data into a piecewise linear function within the specified average approximation
error threshold Φ for each piece.

Proof: When total error
te−tb

> Φ, i.e., the average approximation error is greater
than the average error threshold, the repeat-until loop exits, and one piece zb,e−1

is generated. Therefore, there is no piece whose average approximation error will
be greater than Φ.

Lemma 2 The piecewise linear interpolation algorithm transforms the given
data into a piecewise linear function within the specified maximum approxima-
tion error threshold Ψ for each data point.

Proof: When max error > Ψ , i.e., the maximum approximation error for all
points in one piece is greater than the maximum error threshold, the repeat-until
loop exits, and one piece zb,e−1 is generated. Therefore, there is no point in one
piece whose approximation error will be greater than Ψ .

We can call the transformation algorithm for each location separately to
obtain a piecewise linear approximation of the input data. The output of our
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transformation algorithm is such that the average approximation error for each
piece is less than Φ, and the approximation error for each time point is less than
Ψ .

Example 2. Given the temporal data set in Table 2 and the average error thresh-
old Φ = 2 and the maximum error threshold Ψ = 3, and assuming that t1 =
0, t2 = 1, t3 = 2, t4 = 3, t5 = 4, the transformation algorithm will be executed as
follows for the weather station 1.

First initialize b to 1, and e to 2. Then do while loop. After initializing
the local variables one error, total error and max error, enter into repeat-unitl
loop. This time for loop is skipped because b + 1 > e − 1. Then e increases by
1, i.e., e = 3. Since the until condition is not satisfied, it continues to execute
repeat-until loop again. After executing for loop from 2 to 2, the one error = 3.5,
total error = 3.5, and max error = 3.5. So, total error

te−tb
= 3.5

2−0 = 1.75 < Φ, and
max error = 3.5 > Ψ . So, the until condition is satisfied and hence exit the
repeat-unitl loop. Then generate one piece z1,2, i.e., 75 + 2.00t with the time
interval from −∞ to 1.

Next, b = 2, e = 3, do the while loop again and again, create the piece z2,3

and z3,5, unitl e > n exit the while loop. At last, a piecewise linear function
is generated. The output of the transformation algorithm will be the relation
Temperature composed of piecewise linear functions as shown in Table 3.

SN Temp(t) t

1 75 + 2.00t −∞ < t ≤ 1
1 68 + 9.00t 1 < t ≤ 2
1 82 + 2.00t 2 < t < +∞
2 70 + 3.75t −∞ < t < +∞
3 80 + 6.00t −∞ < t ≤ 1
3 88.67 − 2.67t 1 < t < +∞
4 85− 2.25t −∞ < t < +∞

Table 3. The Temperature Relation

We obtain a piecewise linear function over that is applicable at any time
for each of the four locations. The resulting piecewise linear function for each
location approximates the temperatures by one or several linear pieces.

2.2 Transformation Accuracy Analysis

Note that the interpolation will not be uniformly good on the entire time in-
terval. It will be more accurate in general when the time t we are interested in
is close to one of the original data points. The interpolations allow us to look
a little backward and forward in time with steadily decreasing reliability as we
approach −∞ and +∞. However, for many applications which use reasonable
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t values the interpolations seem good enough. They can be improved by us-
ing more sophisticated interpolation techniques that use high-degree polynomial
functions.

We used the temporal data containing 96×6, 726 temporal data points, that
is 96 monthly precipitation data between the year 1990 and 1997 from 6, 726
weather stations throughout the continental United States [9]. The precipita-
tion values ranged between 0 and 4, 957 with an average value of 295.91 and a
standard deviation of 269.95.

We tested the transformation accuracy of our algorithm with different values
of Φ between 10 and 640, and different values of Ψ between 10 and 640. After
the piecewise linear interpolation function was found, we checked the differences
between the value of the interpolation function and the original values. We ran
separately for each weather station the transformation algorithm and made the
correlation tests.

Table 4, Table 5, and Table 6 show the average number of generated pieces
of the piecewise linear function and the transformation accuracy for different
values of Φ (assume that Ψ = +∞), different values of Ψ (assume that Φ = +∞)
and different values of Φ and Ψ (Φ = Ψ), respectively.

Average Error Threshold 10 20 40 80 160 320 640

Average number of linear pieces 84.18 75.79 62.56 44.51 23.48 6.00 1.57

Correlation coefficient 0.9999 0.9993 0.9955 0.9747 0.8800 0.6459 0.4798

Table 4. The statistics for different average error thresholds

Maximum Error Threshold 10 20 40 80 160 320 640

Average number of linear pieces 89.03 84.29 76.09 63.22 45.72 25.30 7.84

Correlation coefficient 0.9999 0.9999 0.9993 0.9956 0.9748 0.8775 0.6424

Table 5. The statistics for different maximum error thresholds

Avg. & Max. Thresholds 10 20 40 80 160 320 640

Average number of linear pieces 89.03 84.29 76.09 63.22 45.72 25.30 7.84

Correlation coefficient 0.9999 0.9999 0.9993 0.9956 0.9748 0.8775 0.6424

Table 6. The statistics for different average and maximum approximation
thresholds
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The results of the correlation coefficients show that the transformation is
highly accurate when the Φ or Ψ are lower than the average value of the data. The
number of pieces in the piecewise linear functions decreases as Φ or Ψ increase.
We also combine the two approximation thresholds to test the transformation
accuracy.

The maximum number of generated linear pieces for n data points is n− 1.
The relationships between the percent of the number of linear pieces over n− 1
and the correlation coefficient are shown in Figure 1 and Figure 2 when Φ varies
from 10 to 640 and Ψ = +∞, and Ψ varies from 10 to 640 and Φ = +∞,
respectively.

From the Table 6, we can see that the maximum error threshold dominates
the transformation accuracy when both of the two thresholds have the same
value. This result shows that the maximum error threshold is more restrict to
control the transformation than the average error threshold.

Also, we can see that the piecewise linear function transformation has very
high correlation with few number of linear pieces. We believe that this holds for
any reasonable data set. Form the point view of the storage space, this property
shows that the linear function transformation provides a certain ability of data
compression.

Fig. 1. Φ varies, Ψ = +∞

2.3 Other Interpolation Methods

Given a set of spatiotemporal points, we can apply several numerical analysis
algorithms [4,13] to construct curves which pass through the given temporal data
points. In general, for any n temporal data points, there is always a polynomial
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Fig. 2. Ψ varies, Φ = +∞

function with n − 1 degree that passes through all of the n points by using
interpolation algorithms of Lagrange, Gauss, Bessel, etc [13].

3 The Update on Piecewise Linear Functions

There are two kinds of update operations: insert a new time-value pair into or
delete a time-value pair from a piecewise linear function. This section presents
insertion and deletion algorithms of updating the piecewise linear functions.

Insert Operation: From the original data set, we transform the time-value pair
for each location into a piecewise linear function. The following algorithm shows
how to insert a new time-value pair (tα, zα).

———————————————————————————————————

INSERTION ALGORITHM:

Input: A piecewise linear function for the data set (t1, z1), . . . , (tn, zn).
Ψ the maximum error threshold in the approximation.

Output: A new piecewise linear function.

if tα < t1 then
Add one piece zα,1 into the piecewise linear function

else if tα > tn then
Add one piece zn,α into the piecewise linear function

else
Using binary search to find the time interval [tb, te] such that tb ≤ tα ≤ te
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if ψb,e(tα) is between 1
2Ψ and 3

2Ψ then
tβ = tα
if zα < zb,e(tα) then
zβ = zb,e(tβ)− 1

2Ψ
else
zβ = zb,e(tβ) + 1

2Ψ
end-if

end-if
Split the piece zb,e into two pieces, zb,β and zβ,e

end-if

———————————————————————————————————

Theorem 1 The insertion algorithm satisfies the condition, such that the ap-
proximation errors of the inserted point and all of original points are within the
extent Ψ in the new piecewise linear function after inserting the point which
is within the extent 3

2Ψ from the approximated values in the original piecewise
linear function.

Proof: Let us consider the two cases shown in Figure 3.

1. If the approximation error for the point (tα, zα) is not greater than half of
the maximum approximation error threshold, i.e. 1

2Ψ , the original piece is
not changed. Therefore, in this case the insertion satisfies the condition for
the inserted point and all of the original points. This corresponds to the
situation of inserting the point u in Figure 3.

2. If the approximation error for the point (tα, zα) is greater than 1
2Ψ and

less than or equal to 3
2Ψ in the original piecewise linear function, two new

linear pieces are generated after insertion operation. The possible largest
approximation error of the inserted point in the new piecewise linear function
is equal to the original approximation error minus 1

2Ψ , hence less than Ψ .
This corresponds to the situation of the point v in Figure 3. For all of original
points, the maximum approximation error happens at the point v′, which is
Ψ .

Therefore, this insertion algorithm satisfies the above specified condition.

Delete Operation: We use the following algorithm to delete a time-value pair
(tα, zα). We assume that the time points are distributed uniformly between t1
and tn. If the point to be deleted is a boundary point for two pieces, say zb−1,b

and zb,b+1, we approximate the last second point (tβ , zβ) in the piece zb−1,b

and the second point (tγ , zγ) in the piece zb,b+1. Then shrink those two pieces
to zb−1,β and zγ,b+1, and insert one new piece zβ,γ into the piecewise linear
function. For other cases, the piecewise linear function need not be changed.
The deletion diagram is shown in Figure 4.
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β
Ψ/2

original pieces new pieces
v

v’

u

Fig. 3. The insertion operation

———————————————————————————————————

DELETION ALGORITHM:

Input: A piecewise linear function for the data set (t1, z1), . . . , (tn, zn).
Output: A new piecewise linear function.

Using binary search to find the time interval where the point (tα, zα) locates
if (tα, zα) is a boundary point for two pieces, say zb−1,b and zb,b+1 then
tβ := tb − tn−t1

n
zβ := zb−1,b(tβ)
tγ := tb + tn−t1

n
zγ := zb,b+1(tγ)
change the piece zb−1,b to zb−1,β

change the piece zb,b+1 to zγ,b+1

insert one new piece zβ,γ

end-if

———————————————————————————————————

Remark on Modify Operation: For modify operation, we can do it by ex-
ecuting delete-then-insert operations. First delete the specified data point from
the piecewise linear function, then insert the data point with the new value. By
doing so, the value of the data point to be modified is changed to its new value.

The Comparisons of the Interpolation Methods: The linear parametric
constraint transformation method outperforms other interpolation methods in
some important aspects.

First, other interpolation methods needs much more computational time com-
pared with the piecewise linear interpolation transformation since they use higher
polynomial functions in their interpolation algorithms.
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Ψ/2

new pieces

β

b-1

γ

α

b

b+1

original pieces

Fig. 4. The deletion operation

Second, the cost of the update operation on other methods is much more
than that on the piecewise linear interpolation transformation. Actually, other
interpolation methods need reconstruct the whole polynomial function. But us-
ing the method we propose before, the update operation only needs log(n) time
to insert one time point.

4 Algebraic Operators and Queries

We implemented the algorithm for transforming a set of temporal data into
a piecewise linear constraint database. We also implemented a prototype con-
straint database system called TAQS, (pronounced: tax), which is short for
Three-dimensional Animation and Query System. This section describes the ca-
pabilities of this system.

We define algebraic operators on the data model introduced in Section 2. Our
TAQS system provides users the standard relational algebra operations, such as
Project and Join, as well as some standard aggregate operators, such as Min and
Max. The following will describe these operations briefly.

Generally, the constraint tuples has the form of R(a1, . . . , am, z1, . . . , zn),
where a1, . . . , am are m general attributes, and z1, . . . , zn are n geographically
distributed attributes represented by piecewise linear functions of t (called func-
tional attributes later).

Select: The select operator will return the tuples which satisfy the select con-
dition.

Example 3. For the relation Temperature(SN, Temp(t)) in Table 3, the follow-
ing algebraic query will find the temperature at time t = 1.5:

σt=1.5Temperature

The result of this query will be the temperatures at time t = 1.5 shown in
Table 7. The result is also a relation (called Temperature 1.5 relation) which can
be used by other queries.
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SN Temp(1.5)

1 81.500
2 75.625
3 84.667
4 81.625

Table 7. The select result

Project: This operator is used to reorder the columns of a relation or to elim-
inate some columns of a relation. It creates a new relation which contains the
specified columns of the original relation.

Example 4. For the relation Temperature 1.5 in Example 3, the following query
will only return the temperature values.

ΠTempTemperature 1.5

The result is shown in Table 8.

Temp(1.5)

81.500
75.625
84.667
81.625

Table 8. The project result

Add/Subtract: The add or substract operation is adapted to functional at-
tributes of relations. The result of add/substract two relations R1 and R2 will
create a new relation R, where the values of those corresponding functional at-
tributes in R are the piecewise linear functions such that the values at any time
instance are the same as the addition/substraction of the values at that time of
R1 and R2.

Example 5. Suppose there are another relation Temperature2(SN, Temp(t))
which has the same number of weather stations as shown in Table 9.

Executing the following query:

Temperature+ Temperature2

will create a new relation Temperature addition shown in Table 10.

Intersection: This operation returns the intersection points of two relations to
the user. The two relations should have the same attribute names and types.
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SN Temp(t) t

1 70 + 3.00t −∞ < t ≤ 1
1 65 + 8.00t 1 < t +∞
2 75 + 3.75t −∞ < t < +∞
3 80 + 5.00t −∞ < t ≤ 3
3 104− 3.00t 3 < t < +∞
4 80− 2.25t −∞ < t < +∞

Table 9. The Temperature2 relation

SN Temp(t) t

1 145 + 5.00t −∞ < t ≤ 1
1 133 + 17.00t 1 < t ≤ 2
1 147 + 10.00t 2 < t +∞
2 145 + 7.50t −∞ < t < +∞
3 160 + 11.00t −∞ < t ≤ 1
3 168.67 + 2.33t 1 < t ≤ 3
3 192.67 − 5.67t 3 < t < +∞
4 165− 4.50t −∞ < t < +∞

Table 10. The add result

Example 6. Given the relations Temperature and Temperature2, the following
query:

Temperature ∩ Temperature2

will return the tuples whose temperatures are the same. The result is shown in
Table 11.

SN Temp(t) t

1 87.66 t = 2.83
3 80.00 t = 0.00
3 85.65 t = 1.13
3 −35.36 t = 46.45

Table 11. The intersection result

Join: This operator executes the natural join operation for two relations A and
B which have some attributes in common. It will match these same attributes,
then returns the tuples whose projection onto the attributes of A belong to A
and whose projection onto the attributes of B belong to B.
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Example 7. Suppose there are two relations Temperature(SN, Temp(t)) and
Precipitation(SN,Prep(t)) defined in Table 12. The natural join of these two
relations:

Temperature '( Precipitation

will create a new relation, which includes three attributes SN , Temp, and Prep.
The result is shown in Table 13.

SN Prep(t) t

1 1050 + 50.00t −∞ < t < +∞
2 980 + 35.00t −∞ < t ≤ 5
2 1230 − 15.00t 5 < t +∞
3 1040 − 20.00t −∞ < t < +∞

Table 12. The Precipitation relation

SN Temp(t) Prep(t) t

1 75 + 2.00t 1050 + 50.00t −∞ < t ≤ 1
1 68 + 9.00t 1050 + 50.00t 1 < t ≤ 2
1 82 + 2.00t 1050 + 50.00t 2 < t < +∞
2 70 + 3.75t 980 + 35.00t −∞ < t ≤ 5
2 70 + 3.75t 1230− 15.00t 5 < t < +∞
3 80 + 6.00t 1040− 20.00t −∞ < t ≤ 1
3 88.67 − 2.67t 1040− 20.00t 1 < t < +∞

Table 13. The join result

Min/Max: The Min/Max operator will return the minimum/maximum value
within a specified time interval.

Example 8. For the relation Temperature in Table 3, the following query will
find the minimum temperature during the time interval 1 ≤ t ≤ 2:

min(σ1≤t≤2Temperature)

The result of this query will be the minimum temperature during that time
interval as shown in Table 14.
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SN Temp(t) t

1 77 t = 1
2 73.75 t = 1
3 83.33 t = 2
4 80.5 t = 2

Table 14. The minimum result

5 Animation

For spatiotemporal databases, an animation can reveal more information than
could be learned by looking at tables of numbers. For the geographical dis-
tributed data, such as the population or precipitation distribution in states or
counties of a state. The areas of states or counties (x, y values) can be repre-
sented by polygons. The z values (population, precipitation, temperature, etc.)
can be represented by piecewise linear functions. These data can be animated
by 3-D animation or cartogram animations.

3-D Animation: In 3-D animation, each constraint tuple in the constraint
database can be expressed by a 3-D object. In 3-D animation, at each time
instance t, the “height” of the object represents the z value of the constraint
tuple at that time t. Besides of using the “height” to represent the z value, we
can also give each height value a different color or gray scale to make the z values
more clear.

Figure 5 and Figure 6 are two examples of the 3-D animation snapshots for
daily mean temperature in the continental U.S. during winter and summer. Note
that the higher the “height” of an object is, the lighter its color. This make it
more clear, for example, that the mean temperature in Texas is higher than that
in North Dakota during summer.

Fig. 5.A Snapshot for 3-D animation of Daily Mean Temperature DuringWinter
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Fig. 6. A Snapshot for 3-D animation of Daily Mean Temperature During Sum-
mer

Value-by-Area Cartogram Animation: Besides of 3-D animations, another
possible way to display constraint tuples is to use value-by-area cartogram ani-
mation [10]. In value-by-area cartogram [5], instead of giving a “height” to each
area, each area is enlarged or shrunk proportionally to its z value. Figure 7 is
a value-by-area cartogram for the U.S. population in 1990. Value-by-area car-
togram animation can be done by displaying the cartogram snapshots consecu-
tively [10].

Fig. 7. A Value-by-area Cartogram for the U.S. Population in 1990

Value-by-area cartogram animation is a 2-D animation for 3-D data. Hence,
it avoids a problem that could occur in the 3-D animation, namely, the problem
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when a high-value but nearer object obstructs the view of some low-value and
further object. However, the price is the distortion of the objects. For some data
distribution, the distortion may be so much that it may be difficult to construct
the cartogram and may be also difficult to recognize the objects in the animation.
In contrast, the 3-D animation does not distort the object, and it seems more
natural for people to view the “value” as a “height” of an object.

By now we have only discussed the simple case such that the x, y values
do not change by time. Hence the x, y values can be represented by points or
polygons. It is not always the case. For example, sometimes we may want to
animate the population growth for cities in a state, both the city area and the
city population change by time. In this case, it may be convenient to represent
the city area of x, y by constraint tuples.

If an x, y area is represented by constraint tuples, for example, by conjunc-
tion of linear inequalities. It can not be immediately displayed on the computer
screen, but has to be converted to some explicit boundary representation (for
example, vertices of a polygon). Such a conversion is relatively time-consuming.
[2] gives a model, called Parametric Spaghetti Data Model to convert and then
efficiently animate 2-D animation for moving objects. However, the algorithms
in [2] can not be used for general 3-D spatiotemporal objects. For the case that
the change of x, y is independent to z, it is possible to apply algorithms as in [2]
to compute the boundary of x, y, while getting z value from piecewise functions
to have an efficient 3-D animation.

It is also possible to combine the 3-D animations and the value-by-area an-
imations to animate some more complex cases. It is possible to compute the
natural join for relations R1(x, y, z1) and R2(x, y, z2) in which R1 is the relation
for gross state revenue and R2 is the state per-capita revenue. We may want to
view the animation for this join result. In this animation, for each animation
snapshot, we may use a value-by-area cartogram to represent the gross revenue
and the “height” of each area to represent the per-capita revenue.

Similarity Queries: It is possible to query the similarity for the animations.
In practice, people may want to know which map in a set of maps is similar to
a given map. This can be done by using similarity queries.

The definition of the similarity depends on the actual situation. There is no
universal formula to define the similarity. Our system allows user to change the
evaluation rule for similarity measure.

Example 9. Suppose there are the relation RPrec for precipitation. The user
wants to find in which year the average precipitation of the U.S. is the closest
to that in the year 1997.

To query this information, the user may define the similarity measure rule
on cartograms for precipitation. The similarity of two cartograms A and B with
n states and each state with area ai and precipitation values A.zi and B.zi,
respectively, for 1 ≤ i ≤ n may be defined as follows:

sim(A,B) =
n∑

i=1

ai | A.zi −B.zi |
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6 Conclusion and Future Works

In this paper, we proposed a linear constraint database system that supports the
interpolation and update of the input data, algebraic queries and 3-D animation.
Using appropriate queries, the system can support predictions by available data
in the databases. The animation provides an expressive visualization that is
capable of revealing more information than viewing numbers and tables.

For the future work, one extension for the 3-D animation is to support the ro-
tation, scaling and zooming of the objects. Such abilities will make the animation
more expressive.

For queries, an important feature is to support the similarity queries more
efficiently. We are planning to explore indexing methods that support efficient
similarity queries.
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Abstract. Database reformulation is the process of rewriting the data
and rules of a deductive database in a functionally equivalent manner.
We focus on the problem of automatically reformulating a database in a
way that reduces query processing time while satisfying strong storage
space constraints.
In this paper we consider one class of deductive databases — those where
all stored relations are unary. For this class of so-called unary databases,
we show that the database reformulation problem is decidable if all rules
can be expressed in nonrecursive datalog with negation; moreover, we
show that for such databases there always exists an “optimal” reformu-
lation. We also suggest how this solution for unary databases might be
extended to the general case, i.e., to that of reformulating databases with
stored relations of arbitrary arity.

1 Introduction

Abstraction and reformulation techniques have been used successfully in a num-
ber of domains to reduce the complexity of the problems to solve. We present
an application of abstraction and reformulation in the database domain, to the
problem of reducing query processing time. While this problem is formulated in
the database context, it is easy to generalize, since broad classes of problems can
be viewed and solved as database problems.

A database system undergoes a number of transformations during its life-
time. Database schema and/or rule transformations are central to database de-
sign, data model translation, schema (de)composition, view materialization, and
multidatabase integration. Interestingly, nearly all these tasks can be regarded
as aspects of the same problem in a theoretical framework that we proceed to
describe.

Consider an abstract database transformation problem. Suppose the input to
the problem comprises the schema and rules of a deductive database and a set
of elementary queries which, together with some algebra, form a query language
on the database. Suppose the objective of database transformation is to build
an “optimal” structure of the database with respect to the requirements and
constraints that are also provided in the input.

Generally, the transformations of the database schema and rules need to be
performed in such a way that the resulting database satisfies three conditions.

B.Y. Choueiry and T. Walsh (Eds.): SARA2000, LNAI 1864, pp. 144–163, 2000.
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First, it should be possible to extract from the transformed database, by means
of the input query language, exactly the same information as from the origi-
nal database. Second, the result should satisfy the input requirements, such as
minimizing query processing costs. Finally, the result should satisfy the input
constraints; one common constraint is a guarantee of a (low) upper bound on the
disk space for storing the transformed database. Notice that all three conditions
must hold for all instances of the input database.

We call this problem database reformulation and consider logic-based ap-
proaches to its solution. Database reformulation is the process of rewriting the
data and rules of a deductive database in a functionally equivalent manner. By
specifying various input requirements and constraints, the database reformula-
tion problem translates into any of the database schema/query transformation
problems mentioned above.

We focus on database reformulations whose input requirement is to minimize
the computational costs of processing the given queries, under strong storage
space constraints that guarantee no more than linear increase in database size.
In this formulation, the database reformulation framework is most suitable for
dealing with the problems of view materialization and multidatabase integration.

In this paper we give a definition and a formal specification of the database
reformulation problem. We then present the main contribution of this paper,
a complete solution of the database reformulation problem for one class of
databases. In this class of so-called unary databases, all stored relations are
unary, i.e., have one attribute each; in addition, all rules can be expressed with-
out recursion or built-in predicates.

There are a number of important applications where unary databases occur
naturally. Unary databases come to mind whenever there is a need to single
out and process features of objects. One example is indexing in libraries: books
and articles are routinely classified by subject, and it is common for one item
to belong to more than one class. Possible classes can be represented as unary
relations with relevant books represented by tuples in the relations. For example,
an article on statistical profile estimation in database systems can belong to
classes “physical design”, “languages”, and “systems” at the same time.

Unary databases are also useful for taxonomic search in e-commerce; there,
some of the more frequent queries are unions and intersections of classes in several
taxonomies. For example, one might want to find all products which satisfy at
least one of the stipulated properties (union of classes), or those products each
of which satisfies all of the stipulated properties (intersection of classes).

After describing our solution to the database reformulation problem for unary
deductive databases, we suggest how this solution might be extended to the
general case, i.e., to the problem of reformulating databases with stored relations
of arbitrary arity.

In this paper, proofs of the results presented in the text can be found in the
appendix.
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2 Preliminaries and Terminology

Our representation of the domain includes a set of relations; the set of attribute
names for a relation is called a relation schema. A relation is called unary if it
has exactly one attribute.

A relation is referred to as stored if it is physically recorded, as a table (a set
of tuples, each tuple having a value for each attribute of the relation), on some
storage media; a collection of stored relations is called a (regular) database. A
database schema, for a given database D, is a collection of relation schemas for
all stored relations in D. See [28] for more details.

A nonrecursive datalog¬ (nr-datalog¬ [2]) rule is an expression of the form

p(X̄) : − l1(Ȳ ), ... , ln(Z̄), (1)

where p is a relation name, X̄, Ȳ , ... , Z̄ are tuples of variables and constants,
and each li is a literal, i.e., an expression of the form pi or ¬pi (by ¬ we denote
negation), where pi is a relation name. p(X̄) is called the head of the rule, and
its body is a conjunction of subgoals l1(Ȳ ), ... , ln(Z̄). A rule is called safe if
each variable in the rule occurs in a non-negated subgoal in the rule’s body.

A query (view) is a set of rules (in nr-datalog¬, for our purposes) with one
distinguished relation name in the head of some rule(s). A query relation is the
distinguished relation of the query, computed from the query using bottom-up
logic evaluation, formalized, for example, in Algorithm 3.6 in [28]; a view relation
is defined analogously. A query (view) is materialized if the query (view) relation
is precomputed and stored in the database.

Two queries (views) are called equivalent if their relations are the same in
any database. Given a query q, a query q′ is called a rewriting of q in terms of a
set V of relations if q and q′ are equivalent and q′ contains only literals of V .

A deductive database (see, for example, [22]) is a (regular) database as defined
above, together with a set of queries and views defined on (the stored relations
of) the database. A deductive database is called unary if all its stored relations
are unary. In this paper we consider unary deductive databases where all queries
and views are defined in safe nr-datalog¬. Since, as shown in [19], any recursive
program with safe negation and unary stored relations is nonrecursive, all our
results also apply to this more general case.

3 An Example of a Unary Database

Let us consider an abstract example that involves a unary database. Suppose
that an application queries a database with three unary stored relations, r, s,
and t; see Table 1 for a concrete example. Suppose there are three important
queries in that application, defined as follows:

q1(X) : − r(X), s(X), ¬t(X); (2)

q2(X) : − s(X), ¬t(X); (3)
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q3(X) : − t(X), ¬r(X); (4)

see Table 2 for the resulting relations.

Table 1. Stored relations r, s, and t.

r
a
b
c
d

s
a
b
c
e
f

t
c
d
f
g

Also suppose that in this application, all queries of interest can be expressed
in terms of the three queries above. For example, one might pose to the database
the following query q4:

q4(X, Y ) : − r(X), s(X), ¬t(X), t(Y ), ¬r(Y ). (5)

Notice that q4 is simply a cross-product of queries q1 and q3, i.e., a set of com-
binations of each answer to query q1 with each answer to q3.

Table 2. Query relations q1, q2, and q3.

q1

a
b

q2

a
b
e

q3

f
g

A straightforward solution to the database reformulation problem in this case
would be to materialize queries q1 through q3. This solution would certainly
reduce the query processing times for these queries, and consequently for all
queries in the application. However, it would also materialize in the database
duplicate copies of the same objects — those that belong to both r and s but
not to t (objects a and b in our example), since answers to both q1 and q2

include such objects. If the number of such duplicate objects in the database
is considerable, the resulting storage space overhead is a cause of concern. Our
solution to the database reformulation problem for unary applications like this
one guarantees good query execution time while avoiding the overhead suggested
in the example.
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4 Defining Database Reformulation

We study a class of database applications where all queries of interest can be
expressed in terms of some predefined set of elementary queries; this elementary
set can be viewed as an alphabet which defines a query language. We would like
to make “good” decisions on which views to materialize, in order to minimize
query processing costs for this elementary set of queries (and, consequently, for
all expected queries) and to satisfy some (for example, storage space) constraints
on the resulting database.

Database reformulation is the process of rewriting the data and rules of a
deductive database in a functionally equivalent manner. Our cost model for query
execution is the classical bottom-up logic evaluation model; see Algorithm 3.6
in [28].

Let us describe the input and the output of the database reformulation pro-
cess. Consider a set P of relation names. Let S be a database schema that con-
sists of relation schemas for some relation names in P ; S is the set of schemas
for all stored relations in the input. Let RS be a set of definitions, in terms of
S, for some relations whose names are in P ; RS is the set of views in the input.
Let Q be a set of names of all elementary query relations of interest, such that
Q ⊆ P and that RS contains definitions of all relations in Q.

Now let V be a database schema which consists of schemas for some relation
names in P ; V describes new stored relations which are materialized in the pro-
cess of database reformulation. Finally, let RV be a set of views defined in terms
of V .

Definition 1. For a given triple (S,RS ,Q), a triple (V ,RV ,Q) is a reformu-
lation of (S,RS ,Q) if for each query relation in Q with a definition qS in RS ,
RV contains a rewriting of qS .

As has already been mentioned, we focus on the problem of database reformu-
lation under strong storage space constraints. Other constraints may be included
as well; all constraints relevant to the application in question are considered part
of the reformulation input. Let us describe the storage space constraints we focus
on in this paper. Suppose D is an arbitrary database with the schema S; let D′

be a database that consists of the tables for all and only those (materialized,
starting from D) view relations in V that are used in defining the query relations
in Q. For a fixed database schema S and a fixed set of views that define rela-
tions in V in terms of S, consider all possible databases D and all corresponding
databases D′, with sizes (in bytes) |D| and |D′| respectively.

Definition 2. A reformulation (V ,RV ,Q) of an input (S,RS ,Q) satisfies the
no-growth storage space constraint if for all pairs (D, D′), the storage space
|D′| taken up by D′ does not exceed |D|:

|D′| ≤ |D|. (6)
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A reformulation (V ,RV ,Q) of a given input (S,RS ,Q) is called a candidate
reformulation if it satisfies the constraints specified in its input. A reformulation
output is called worthwhile if, in that reformulation, at least one elementary
query in Q is executed faster than in the input formulation, for all database
instances. In this paper we focus on candidate worthwhile reformulations of
unary databases under the no-growth storage space constraint.

5 The Orthogonal Basis of a Unary Database Schema

Our ultimate objective in solving the database reformulation problem is to au-
tomate the reformulation process in as general a setting as possible; in other
words, we would like to come up with some reformulation algorithm. We try to
answer the question of whether the potentially infinite, for each input, search
space of reformulations can be transformed in such a way that it would become
finite but would still contain valuable reformulations.

One way of making the search space of reformulations more tractable is to
restrict the number of view relations that are used to rewrite the input queries.
Suppose we could show that, for unary databases, the set of view relations that
can define any “good” reformulation, is finite, and that all and only these view
relations can be defined in a particular format. Then the problem of finding
“good” reformulations of arbitrary unary databases would be reduced to the
clearly feasible problem of enumerating and combining all views defined in this
particular format, thereby giving us a nice enumeration algorithm.

In this section we substantiate this hypothesis by showing that for an ar-
bitrary unary input there exists a “good” reformulation with certain desirable
properties and such that its materialized views are defined in a particular format.

Let us analyze the definition of query q1 given in equation 2 in Section 3.
The body of the definition is a conjunction of subgoals with the same variable;
notice that each of the stored relations r, s, t yields exactly one subgoal in the
definition. Let us build a pattern based on this observation. For a unary database
with n stored relations s1, s2, ... , sn, the pattern looks as follows:

l1(X), l2(X), ... , ln(X); (7)

here, li(X) is either si(X) or ¬si(X).
In our example, the body of query q1 is an instance of the pattern. We will

show below that arbitrary unary queries, when defined on unary databases, can
be rewritten as unions of such patterns. For instance, q3 in our running example
(equation 4 in Section 3) can be rewritten as a union of two patterns:

q3(X) : − t(X), ¬r(X), ¬s(X)
⋃

t(X), ¬r(X), s(X). (8)

For an arbitrary unary database schema one can define a set of relations as
(nearly) all possible instances of the pattern described in equation 7. The only
exception is the instance where all subgoals are negated, since we only consider
safe rules.
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It is easy to show that a set B of relations defined in such a manner on a unary
database schema S always exists and is unique, up to reorderings of subgoals in
rules and to variable renamings. Notice that, if S has n elements, then there are
2n− 1 relations in the set B for S. Another property of the set B is that, for any
instance D of a database with schema S, each object in the universe of discourse
of D belongs to exactly one relation in B; for this reason, we call the set B the
orthogonal basis of the unary database schema S.
Definition 3. The orthogonal basis of a unary database schema S = { s1, s2,
... , sn } is the set B of (nearly) all possible relations defined as

bi(X) : − l1(X), l2(X), ... , ln(X), (9)

where each lj(X) is either sj(X) or ¬sj(X); the only such combination which is
not in B is that where all subgoals are negated.

Notice that this definition effectively provides an algorithm to construct the
orthogonal basis of a unary database schema.

We observe the following property of unary relations.

Theorem 1. Any unary relation that can be defined in nr-datalog¬ on a unary
schema S can be rewritten as a union of relations in the orthogonal basis B of
the schema S.

An important result is an immediate corollary of Theorem 1. Let r be a rule
in nr-datalog¬ which defines an arbitrary (not necessarily unary) query relation
on a unary database schema S. Then:
Corollary 1. There exists a unique, up to reordering of subgoals and variable
renamings, rewriting of r in terms of the orthogonal basis B of S.

Let us build the orthogonal basis and rewrite all the queries in our running
example from Section 3.

Example 1. The unary database schema is S = { r, s, t }. The three query
relations q1 through q3 constitute the set Q; their definitions in equations 2 - 4
constitute the set RS .

The orthogonal basis B of the schema S consists of seven (23 − 1) relations
with the following definitions:

b1(X) : − ¬r(X), ¬s(X), t(X); (10)

b2(X) : − ¬r(X), s(X), ¬t(X); (11)

...

b7(X) : − r(X), s(X), t(X); (12)

and queries q1 through q3 can be rewritten in terms of the elements of B as:

q1(X) : − b6(X); (13)
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q2(X) : − b2(X)
⋃

b6(X); (14)

q3(X) : − b1(X)
⋃

b3(X). (15)

Now the query q4, which is a cross-product of queries q1 and q3, can be rewritten
as the following disjunction of two rules:

q4(X, Y ) : − b6(X), b1(Y ); (16)

q4(X, Y ) : − b6(X), b3(Y ). (17)

Let B be the orthogonal basis of a unary database schema S, and let RB be
the set of rewritings of all rules in RS in terms of the elements of the set B.
Definition 4. The triple (B,RB,Q) is called the orthogonal basis reformulation
of the triple (S,RS ,Q).

Notice that Definition 3 and the proofs of Theorem 1 and of Corollary 1 effec-
tively provide an algorithm for constructing the orthogonal basis reformulation
of an arbitrary unary input.

It is easy to show that for any unary database schema, its orthogonal basis
reformulation exists and is unique. To formulate another property of the orthog-
onal basis reformulation, we will need this definition.

Definition 5. A database satisfies the minimal-space constraint if each object
in the universe of discourse (UOD) of the database is only stored once.

In other words, the minimal-space constraint requires a database to “fit into”
the minimal space needed to store all the information about the database. Notice
that if a database satisifes the minimal-space constraint then it also satisfies the
no-growth storage space constraint.

Theorem 2 (Properties of the Orthogonal Basis). For the orthogonal basis
reformulation (B,RB,Q) of a triple (S,RS ,Q), where S is unary, the following
properties hold:

1. The only operations in all rules in RB are union and cross-product: there
are no intersections or negations.

2. (B,RB,Q) satisfies the minimal-space constraint.
3. Maintenance costs in the reformulated database, provided certain simple in-

dex structures are in place, are linear in the size of the schema S, i.e., in
the number of the original stored relations.

Notice the low cost of updates in the reformulated database.
Not surprisingly, these nice properties come at a price: since the number

of relations in the orthogonal basis is exponential in the size of the original
database schema S, according to our cost model the time to answer the queries
in Q will probably increase in the orthogonal basis reformulation, relative to
that in database instances with the schema S. However, the increase is not too
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high because, even though the number of stored relations in the reformulated
database is exponential in the number of the original stored relations, the size of
the actual data (stored tuples) does not change after the reformulation. Thus,
queries and updates on the reformulated database can be made faster by using
certain simple index structures.

6 Enumerating Candidate Relations

From the previous section we know how to obtain one interesting reformulation
of the given input. Is it possible, in the unary case, to generate all interesting
reformulations, i.e., those that have the same nice properties as the orthogonal
basis reformulation? It turns out that the answer is yes: in this section, we show
how to finitely enumerate all worthwhile candidate (see definitions in the last
paragraph of Section 4) reformulations of an arbitrary unary reformulation input.

Consider a unary database schema S. Let r be an arbitrary relation defined
in nr-datalog¬ on S, and let D be an arbitrary database instance with schema
S. Consider the space |D| required to store D and the space |r| required to store
r when it is materialized; both |D| and |r| are in bytes.

Theorem 3. In all databases D with schema S, |r| does not exceed |D|:

∀ D : |r| ≤ |D|, (18)

if and only if r is a unary relation.

This result has one important consequence: it means that if we want to
obtain candidate reformulations, i.e., those that satisfy a strong storage space
constraint (see Definition 5 in Section 5), the only relations we can choose as
stored (materialized) in reformulated databases are unary relations.

Using Theorem 1, we have designed a unary enumeration algorithm whose
input is a unary database schema S and whose output is a set W of relations
defined on S.

Algorithm 1 (Unary Enumeration Algorithm). First build the orthogonal
basis B of S, then output all unions of the elements of B.

By Theorems 1 and 3, this algorithm generates the definitions of all and
only those relations that can be defined in terms of the schema S, and, at the
same time, can fit in the storage space of the original database for all database
instances with schema S. Thus, the following holds.

Theorem 4. For a given reformulation input (S,RS ,Q) where S is unary, the
unary enumeration algorithm 1 generates all views that could possibly be used to
rewrite the definitions in RS and, at the same time, fit in the storage space of
the original database for all databases with schema S.
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In what follows, we will consider as candidate reformulations only those re-
formulations that satisfy the minimal-space constraint. Notice that under this
requirement, the orthogonal basis reformulation is a candidate reformulation.

Using this notion of candidacy, we propose the following algorithm for re-
formulating unary deductive databases. Let (S,RS ,Q), where S is unary, be
an input to the database reformulation problem. Let W be the set of relations
output by Algorithm 1. Algorithm 2 described below outputs reformulations of
(S,RS ,Q).

Algorithm 2 (Enumeration of Candidate Reformulations). Output all
triples (V ,RV ,Q) where V is a subset of W and RV is a set of rewritings of the
rules in RS in terms of V, provided such rewritings exist for all relations defined
in RS .

The following result is an easy observation on Algorithm 2:

Theorem 5. For an arbitrary reformulation input (S,RS ,Q) where S is unary,
Algorithm 2 generates all its possible candidate reformulations.

7 The Minimal Non-forking Reformulation

In the previous section we have described an algorithm that generates all can-
didate reformulations of a given unary input; the problem with the algorithm is
that it may generate many non-candidate reformulations as well and, in general,
the search space for finding candidate reformulations is too large. Fortunately,
it turns out that one does not even need to generate and compare all ”poten-
tially good” reformulations of the given input by using this algorithm. Instead
of applying the storage space criterion to each output of Algorithm 2, one can
reduce the search space in advance by using the same storage space constraint.

For the ease of exposition, we will need the following notion: for a query r
defined on a unary database, a unary subquery of r for some variable X (for
some constant c) is the conjunction, in some rule for r, of all subgoals of r with
that variable X (constant c). Notice that each unary subquery of an arbitrary
query is a definition of a unary relation.

For a unary reformulation input (S,RS ,Q), consider a bipartite graph G =
(U , B, E) where U and B are two sets of vertices and E is the set of edges,
E ⊆ U × B. The graph is constructed as follows: U is the set of relation names
for all unary subqueries of all input queries in Q; B is the set of names of all
relations in the orthogonal basis of S; E contains an edge (u, b) iff the definition
of the unary query denoted by u, as a union of basis relations, includes the
relation denoted by b. We call this graph the reformulation graph of (S,RS ,Q).

Example 2. Consider our running example from Section 3; Example 1 in Sec-
tion 5 shows the orthogonal basis reformulation for that example.
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Fig. 1. The reformulation graph G for Example 2.

Let us build the reformulation graph G of (S,RS ,Q) from Section 3.

1. The set U of the graph consists of three vertices, one for each of the elemen-
tary unary queries q1 through q3.

2. The set B represents all relations in the orthogonal basis B of the set S.
3. The set E contains edges (q1, b6), (q2, b6), (q2, b2), (q3, b1), and (q3, b3).

The resulting graph is shown in Figure 1; here we see a depiction of the three
unary subqueries of queries q1 through q3, redefined as unions of basis relations;
for example, the only unary subquery of q2 is a union of two basis relations b2
and b6, and so on.

Reformulation graphs, built as illustrated in Example 2, suggest a method
for building “good” reformulations of unary databases: the idea is to materialize
all maximal unions of basis relations whose elements are used to define no more
than one unary subquery. For instance, in Example 2 we would materialize three
relations: b2, b6, and the union of b1 and b3. Materializing such relations would
optimize query processing costs by minimizing the time required to compute the
unary subqueries, under the constraint that none of the objects in the UOD of
the database is stored twice. This idea is embodied in Algorithm 3, which takes
as input a triple (S,RS ,Q), where S is unary, and outputs a reformulation
(M,RM,Q) of (S,RS ,Q).

Algorithm 3 (Minimal Non-Forking Reformulation).

1. Construct the bipartite graph G of (S,RS ,Q); G = (U , B, E).
2. Classification of the vertices in B: for each vertex b ⊆ B, place b into the

set N (nonforking) if exactly one edge in G is incident on b, and place b into
the set F (forking) if more than one edge in G is incident on b.

3. Transform G into G′ by removing from B all vertices which are neither in N
nor in F , i.e., those that are not incident on any edge in G.

4. View materialization I: materialize separately each relation b in F .
5. View materialization II: transform the graph G′ into G′′ by removing all ver-

tices in F and all edges incident on these vertices, then materialize all unions
of relations b such that the corresponding vertices in B belong to a connected
subgraph of G′′.

6. Construct a set of rules RM by rewritings all queries in RS in terms of the
relations M materialized in steps 4 and 5.
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In Example 2, N = { b1, b2, b3 }, F = { b6 }, the vertices discarded in step
3 are b4, b5, b7; view materialization I materializes b6, and view materialization
II materializes relations b2 and b1

⋃
b3. Notice that since the stored relations

in (M,RM,Q) are parts of unary subqueries of relations in Q, step 6 of the
algorithm, i.e., rewriting the query relations in terms ofM, is straightforward.

Definition 6. The output (M,RM,Q) of Algorithm 3 is called a minimal non-
forking reformulation of (S,RS ,Q).

The name non-forking comes from the method of building the materialized
relations: in the bipartite graph G for our running example, in Figure 1 we can
see a fork (more than one edge) at the basis relation b6, which means that b6
is used in the definition of more than one unary subquery and, for this reason,
needs to be materialized as a separate relation.

It is easy to show that for any unary reformulation input, the minimal non-
forking reformulation exists and is unique; moreover, by construction it is always
a candidate reformulation of the input.

Now let us recall that the objective of database reformulation is to mini-
mize query processing costs by materializing views. The most important result
of this paper is that any input query is answered in the minimal non-forking
reformulation at least as fast as in any candidate reformulation:

Theorem 6. In the minimal non-forking reformulation (M,RM,Q) of a refor-
mulation input (S,RS ,Q) where S is unary, any query is answered at least as
fast (for all database instances) as in any candidate reformulation of (S,RS ,Q).

Notice that, depending on whether the input database itself satisfies the
minimal-space constraint, the minimal non-forking reformulation may or may
not process the queries faster than the input database. In any case, Theorem 6
reduces the search space of reformulations to just two formulations: the input
formulation (S,RS ,Q) and the minimal non-forking formulation (M,RM,Q).

8 Going Beyond the Unary Case

Now that we have the complete solution to the unary database reformulation
problem, we would like to extend the obtained results to the general case of
reformulating databases with stored relations of arbitrary arity. We don’t have a
solution yet, but the results we have obtained for the unary case give us insight
into the directions to move in the general (n-ary) case. The example below shows
one possible scenario.

Example 3. Suppose we have a database with five binary stored relations s1, s2,
s3, s4, and s5. Suppose we have only three elementary queries of interest, p, q,
and r, with the following definitions:
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p(X, Y ) : − s1(X, Z), s2(Y, Z), ¬s3(X, Y ), s4(X, W ); (19)

q(X, T ) : − s1(X, Z), s2(Y, Z), s3(X, Y ), s5(X, T ); (20)

r(X, W ) : − s1(X, Z), s2(Y, Z), s4(X, W ). (21)

We could notice a common subexpression s1(X, Z), s2(Y, Z) in these three
definitions, and could materialize a new relation t defined as:

t(X,Y ) : − s1(X, Z), s2(Y, Z); (22)

this materialization might be done in traditional query optimization.
However, we can do better than that. Consider relations

b1(X, Y ) : − s1(X, Z), s2(Y, Z), ¬s3(X, Y ); (23)

b2(X, Y ) : − s1(X, Z), s2(Y, Z), s3(X, Y ); (24)

they are reminescent of the orthogonal basis relations in the unary case.
Notice that the union of b1 and b2 gives us exactly the relation t. Now, if we

dematerialize s1, s2, s3 and materialize b1 and b2, we can rewrite our queries as

p(X, Y ) : − b1(X, Y ), s4(X, W ); (25)

q(X, T ) : − b2(X, Y ), s5(X, T ); (26)

r(X, W ) : − b1(X, Y ), s4(X, W ); (27)

r(X, W ) : − b2(X, Y ), s4(X, W ). (28)

The resulting database still consists of binary relations only, so the required
storage space cannot increase dramatically (assuming the absence of any func-
tional dependencies in the original stored relations), but now the query defini-
tions look much simpler and can be computed faster.

9 Related Work

Database schema evolution is an integral part of database design, data model
translation, schema (de)composition, and multidatabase integration; fundamen-
tal to these problems is the notion of equivalence between database schemata.

Database schema equivalence was first studied in [4, 7, 24]. Later, relative
information capacity was introduced in [16] as a fundamental theoretical concept
which encompasses schema equivalence and dominance. Tutorial [15] surveys a
number of frameworks, including relative information capacity, for dealing with
the issue of semantic heterogeneity arising in database integration.

In practical database systems, database design frequently uses normalization,
first introduced in [8] and described in detail in [28]. [6, 17] survey methods and
issues in multidatabase integration.

Query transformation is another aspect of database transformation tasks.
Query rewriting is important for query optimization (see [5, 27, 29]), especially
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in deductive databases [22] where queries can be complex and the amount of data
accessed can be overwhelming. [23] is a survey on implementation techniques and
implemented projects in deductive databases.

There is an extensive body of work on theoretical aspects of query rewriting.
The paper [1] discusses the complexity of answering queries using materialized
views and contains references to major results in the areas of query containment
and view materialization. [13, 14, 18, 25] describe various approaches to view
materialization. [3, 9, 10, 21] treat the problem of using available materialized
views for query evaluation.

Transformations of database schemas and queries can be considered together
as reformulations of logical theories. [26] provides a theoretical foundation for
theory reformulations, and [12, 20] contain work on general transformations of
logical theories.

Descriptions of basic methods used in this paper can be found, e.g., in [11].

10 Conclusions and Future Work

We have defined and formally specified database reformulation, as the process of
rewriting the data and rules of a deductive database in a functionally equivalent
manner. We focus on the problem of automatically reformulating a database in
a way that reduces the processing time for a prespecified set of queries while
satisfying strong storage space constraints.

In this paper, we have described a complete solution of the database refor-
mulation problem for one class of deductive databases, those where all stored
relations are unary and all queries and views are expressed in nonrecursive dat-
alog with negation. We have shown that the reformulation problem for these
unary databases is decidable. Furthermore, we have shown that for any such
unary database, there is a special reformulation which satisfies strong storage
space constraints and where query processing costs for all input queries are as
low or lower than in any reformulation that satisfies the same constraints. We
have described how to build such a reformulation.

We have also suggested a possible extension of our solution for unary
databases to the general case of deductive databases with stored relations of
arbitrary arity, under strong storage space constraints.

This paper describes just the first step in the formidable task of taming
database reformulation. Our long-term research objective is to explore how
database reformulation can be automated for databases of arbitrary arity, with
rules expressed in successively more complex standard query languages, i.e., var-
ious extensions of datalog. (We have already solved the problem for databases
whose rules can be expressed as conjunctive queries.) We also plan to study
reformulation of databases with various forms of integrity constraints.
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A Theorem Proofs and Additional Examples

A.1 Proofs for Section 5

We start this section with a simple observation which we will be using in the
proofs below.

Observation A.1 Any query in nr-datalog¬ on a database schema S has an
(equivalent) safe rewriting where the set of relation schemas for all the subgoals
is a subset of S.

We will call the rewriting of a query q where all predicates in rule bodies
correspond to stored relations in S, the schema rewriting of q.

Proof (Theorem 1). Let S = { s1, s2, ... sn }. Consider a fixed pair ( S, q ),
where q is a unary query defined on S; let B be the orthogonal basis of S.

It is easy to show that the schema rewriting q̃ (see Observation A.1) of q on
S is a set of rules where the body of each rule is a unary subquery.

Let us show that the body of each rule in q̃ can be converted into a union of
relations in the orthogonal basis B of S. Consider an arbitrary rule r in q̃; let the
only variable in r be X . The body of r is a unary subquery; let us call it C(X).

By definition of the schema rewriting q̃, each subgoal in r corresponds to
a relation name in S, and thus C(X) consists of literals which are (possibly
negated) relation names in S; notice that because all rules are safe, at least one
conjunct in C(X) is not negated. We can assume without loss of generality that
each relation name in S occurs in C(X) no more than once. Then C(X) looks as
follows:

li1(X), li2(X), ..., lir (X); (29)

here, lj(X) is either sj(X) or ¬sj(X), where j is between 1 and n; since each
relation name in S occurs in C(X) at most once, the total number m of conjuncts
in C(X) does not exceed the size n of S: m ≤ n.
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Now let us show, by induction on the difference k between n and m, that
C(X) has an equivalent rewriting as a union of relations in the orthogonal basis
B of S.

1. Basis: k = n − m = 0. Here each relation sj ε S is represented in C(X)
exactly once, and at least one of the subgoals of C(X) is not negated. Thus,
C(X) is the body of the definition of one of the orthogonal basis relations
bi ε B, and we can rewrite C(X) as bi.

2. Induction: k = n − m > 0. Consider C(X) with m literals. Since m < n,
there is at least one relation si in S which is not represented in C(X). Then
C(X) can obviously be rewritten as a disjunction:

C(X) ≡ ( C(X), si(X) )
⋃

( C(X), ¬si(X) ). (30)

Now each disjunct in the RHS of the equation has m + 1 literals and thus,
by the inductive hypothesis, can be represented as a union of basis relations
in B.

3. By repeatedly rewriting C(X) as an increasingly long union of components,
as shown in 1 and 2 above, we obtain a disjunction of relations in B which is
an equivalent rewriting of C(X). The process terminates when the number
of conjuncts in each disjunct reaches n.

The case when X is a not a variable but a constant is treated analogously to
the case with variables.

Now we replace each such C(X), for each variable or constant, in each rule
in q̃ by its rewriting as a union of orthogonal basis relations in B. The resulting
set of rules qB is equivalent to q̃. Finally, by transitivity of equivalence via q̃, we
can conclude that qB is a rewriting of q.

Proof (Corollary 1). Let S = { s1, s2, ... sn }. Consider a fixed pair ( S, q ),
where q is an arbitrary query defined in nr-datalog¬ on S; let B be the orthogonal
basis of S.

(1) Existence of a rewriting: since any rule in q is a cross-product of unary
subqueries, any such rule can be (equivalently) rewritten completely as a cross-
product of unions of relations in the orthogonal basis of the schema S; see The-
orem 1. To turn the resulting query into the nr-datalog¬ format, one may need
to convert cross-products of unions, in bodies of rules, into a set of conjunctions,
using a standard procedure.

(2) Uniqueness of the rewriting: Suppose there are two rewritings of q in terms
of the set B, q

(1)
B and q

(2)
B . It is easy to show that any rule in these rewritings

must be in the following format:

r
(j)
i (X1, X2, ... Xm) : − bk1(X1), bk2(X2), ..., bkm(Xm); (31)

where j is either 1 or 2, all m variable names in the head of the rule are different,
and each bkl

in the rule’s body is in B. Notice that since all variable names are
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different, there are no intersections of subgoals in the bodies of the rules; also,
since all rules are safe, there can be no negated subgoals in the rules.

Now, since q
(1)
B and q

(2)
B are equivalent, by the containment mapping theo-

rem for positive datalog with disjunctions, the relation for each rule in q
(1)
B is

contained in the relation for some single rule in q
(2)
B , and vice versa. Consider an

arbitrary rule r(1) in q
(1)
B , and consider the rule r(2) in q

(2)
B such that r(1) is con-

tained in r(2). It is not possible that the containment is proper in any database
instance with schema B, since the sets of objects in the tables for basis relations
are pairwise disjoint. Thus the definitions of r(1) and r(2) are the same, up to
variable renamings.

From this observation it is clear that there is a one-to-one correspondence
between the rules in q

(1)
B and q

(2)
B . Thus, the rewriting of q in terms of the or-

thogonal basis B of S is unique up to reorderings of subgoals.

Proof (Theorem 2).
1. Follows from the proof to Corollary 1.
2. Follows from the property that for any database instance D with schema

S, each object in the universe of discourse (UOD) of D belongs to exactly one
relation in B.

3. We consider three elementary types of database updates: (A) insertion,
(B) deletion, and (C) proper update which we model as a deletion followed by
an insertion. Let us consider a fixed database instance D with schema S; let D′

be the database instance with the schema B, obtained from D by the orthogonal
basis reformulation. In what follows, we assume the presence of certain indexes
and metadata that will be descibed as needed.

Now let us consider, in turn, the three elementary update operations in D
that we have isolated, and study the complexity of the corresponding operations
in D′.

(A) For an insertion of an object α into the table for a relation si in D, there
are two cases:

– if α is not already in the UOD of D then, in D′, it needs to be placed into a
relation bj which contains objects belonging to si only and not to any other
relation; this relation bj can be mapped to si once before D′ is populated;
therefore, the time required to insert α into D′ is constant;

– if, however, α is already in the UOD of D, then the first action in D′ will be
to access, from α, the table to which it belongs (this operation takes constant
time with the use of an index), and then to examine, in the metadata for D′,
the definition of the basis relation for that table (takes time which is linear
in the length of the definition of the relation, i.e., in the number of elements
in S); if the subgoal for si is not negated in this definition then the object is
already in the correct table, and no further action is required; if, on the other
hand, the subgoal for si is negated in the definition, then, after deleting α
from that table, the next and final action is to find the basis relation which
has exactly the same definition except that si is not negated there (takes
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constant time with an index), and to place α into the corresponding table;
in both cases the total complexity of the insertion operation in D′ depends
on simple index accesses described above and is thus linear in the number
of elements of S.

(B) For a deletion of an object α from the table for a relation si in D, there
are also two cases, and the analysis is similar to that for the insertion case.

(C) A proper update is a deletion followed by an insertion; therefore, its
complexity is the sum of the complexities of its components, i.e., is also linear
in the size of the schema S.

A.2 Proofs for Section 6

Proof (Theorem 3). In this proof, we consider a relation r defined in nr-datalog¬

on a unary database schema S, and a database instance D with schema S.

(1) The “if” part: let r be a unary relation. Consider an arbitrary database D
with schema S; the set of answers to r in D is effectively a set of some objects
that are already stored in D. In the worst case, the set of answers to r includes
all the objects stored in D; even in this case, the space required to store the set
of answers to r cannot exceed the space required to store D. We conclude the
proof by noting that this result does not depend on the choice of the database
instance D.

(2) The “only if” part: suppose some relation r is such that for any database
instance D with schema S, the set of answers to r in that database does not
require more storage space than D itself.

Assume r is not unary; suppose r is a binary relation. We will show that in
this case, there exists a database D with schema S, such that the set of answers
to r on that database cannot “fit into” the storage space required to store D.

Consider a schema rewriting of the rules for r (see Observation A.1). For r
to be binary, there must be at least one rule in the schema rewriting with two
different variables in the head, since relations like r(X, X) are essentially unary;
let us call these variables X and Y . For this rule to be safe, the body of the rule
must have at least two nonnegated subgoals, one with argument X and the other
with argument Y ; let these subgoals be si(X) and sj(Y ), X �= Y , si ε S and
sj ε S. Notice that for the set of answers to the rule not to be empty in all
databases with schema D, no negated subgoal with argument X in the body of
the rule can have relation name si; similarly for Y and sj . Let S′ be the set of
all relation names in S such that this rule for r has a nonnegated subgoal with
that relation name (notice that subgoals with variables other than X or Y are
redundant in the body of the rule); let k be the number of relations in S′.

Now consider a database instance D with schema S, such that the only
nonempty tables in D are those for the relation names in S′. Let the size of
the UOD of D be any m > k/2; let each of the k nonempty tables in D contain
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all the m objects in the UOD of D. Then the number of objects stored in D is
k ∗m.

Now, when we compute this particular rule for r, we see that the set of
answers to this rule is the set of two-element tuples, where there is a tuple for
each combination of two objects in the UOD of D. Thus, the number of answers
to this particular rule in D is m2, and the number of objects that need to be
stored for these answers is 2 ∗m2 (we count as a unit the space needed to store
an argument value). Since m > k/2, we have 2 ∗m2 > k ∗m. Since the set of
answers to r includes all answers to the rule, the space needed to store the set
of answers to r is at least the space needed for this rule. Therefore, the set of
answers to r in this database D requires more storage space that D itself.

We have shown that our premise does not hold when r is binary; thus we have
proved the claim by contradiction for all binary relations that can be defined on
a unary database schema S. A similar counterexample can be built for a relation
r of arbitrary arity greater than 2. We can conclude that to “fit into” the storage
space of an arbitrary database with schema S, r needs to be unary.

Proof (Theorem 4). After we notice that a union of orthogonal basis relations,
when materialized, satisifes the minimal-space constraint, the claim of the the-
orem follows immediately from Theorems 1 and 3.

Proof (Theorem 5). Consider an arbitrary candidate reformulation (V ,RV ,Q)
of a triple (S,RS ,Q) where S is unary. By definition, for any database instance
D with schema S and its reformulated counterpart D′ with schema V , none of
the stored (materialized) relations in D′ take up more storage space than D.
Thus in all candidate reformulations of (S,RS ,Q), all stored relations are unary
relations. Observing that Algorithm 6 outputs all reformulations whose all stored
(materialized) relations are unary, concludes the proof.

A.3 Proofs for Section 7

Proof (Theorem 6). Observe that in the minimal non-forking reformulation, the
only operations are unions and cross-products (since any candidate reformula-
tion has the same properties as the orthogonal basis reformulation, and from
Theorem 2). We assume the standard bottom-up query evaluation cost model;
in this model, all unary subqueries of each rule are computed before any Carte-
sian product is processed. The stored (materialized) relations in the minimal
non-forking reformulation are maximal unions of basis relations, such that these
unions belong to the same unary subgoal. Assuming that it is at least as fast to
scan a union once and then to perform a Cartesian product, than it is to retrieve
the elements of the union one by one, combined with the Cartesian product each
time, and then to take the union of all the results, we obtain the result of the
theorem.
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Eric Grégoire1
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Abstract. Many works about abstraction of Constraint Satisfaction
Problems (CSPs) introduce materials in order to build specific abstrac-
tions. But, to our best knowledge, only two works [2, 9] were devoted
to defining frameworks of CSP abstraction. In this paper, we try to go
one step beyond by proposing an original and unifying framework with
a two-fold objective: a proposal sufficiently general to embrace previous
works and to envision new forms of abstraction, and sufficiently precise
to decide without any ambiguity the correctness of a given abstraction.

1 Introduction

Abstraction techniques concern many fields of computer science including plan-
ning, theorem proving and program analysis. These domains have all consid-
erably benefited from abstraction methods whereas the constraint satisfaction
domain has for a long time been neglected. However, over the last few years,
there has been a growing interest in abstraction of CSPs (Constraint Satisfaction
Problems), as mainly illustrated by new works using the concept of interchange-
ability introduced by Freuder [11]. But, except for Caseau [2] and Ellman [9],
we do not know of any framework proposals designed for CSP abstraction. In
this paper, we try to go one step beyond by proposing an original and unifying
framework.

Generally speaking, a CSP abstraction consists of approximating a concrete
(or ground) problem by an abstract one1. Among other things, CSP abstraction
can be used to improve the performance of the concrete search. Indeed, in order
to reduce the complexity of the search, the abstract problem can be defined
by clustering variables and values, and by simplifying or removing constraints.
Solving an abstract problem may then be seen as a guiding method to solve a
concrete problem since it is possible to use abstract solutions in order to look for
concrete solutions [9]. As a rule, CSP abstraction involves fewer variables and
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smaller domains. Therefore, in some cases, solving a concrete problem through
abstraction is eventually far more efficient than directly solving it.

In this paper, a CSP abstraction is defined by two CSPs and a structure called
abstraction base. An abstraction base establishes a correspondence between the
domains of the CSPs: each link of this correspondence is labelled with a so-called
approximation relation. On the one hand, the framework we propose addresses
CSP abstraction in a general way since the user is totally free to define the ab-
straction links. Indeed, it is possible to define a CSP abstraction by combining
value and variable clustering. Besides, the clustering operation is completely un-
constrained since one element (value or variable) can appear in more than one
cluster. As a consequence, the user is offered a real power of expressiveness and
declarativity. On the other hand, the framework is sufficiently precise to deter-
mine the correctness of a given abstraction. Sound or complete CSP abstractions
can be guaranteed by checking that certain conditions are verified on relations.

The paper is organized as follows. After some formal preliminaries, fundamen-
tals of CSPs and abstraction are presented. Then, the structure of abstraction
base is described and CSP abstraction is formally defined. Before presenting
some results and related works, we prove the correctness of CSP abstraction.

2 Formal Preliminaries

Let S be a set, |S| denotes the number of elements in S and ℘(S) denotes the
power-set of S, i.e., the set {A | A ⊆ S}. A (strict) covering Q of S is a subset of
℘(S) such that the union of elements ofQ gives S. A partition P of S is a covering
such that any pair of elements of P is disjoint. An elementary partition is a par-
tition P such that any element of P is a singleton. Let S1, ..., Sn be n given sets,
the Cartesian product S1 × ... × Sn is the set {(a1, ..., an) | ai ∈ Si, ∀i ∈ 1..n}.
Any element v = (a1, ..., an) in S1× ...×Sn is called a n-tuple and v(i) denotes
ai, the ith element in v. Any subset R of S1 × ...× Sn is called a n-ary relation.
We will note def(R) the Cartesian product S1× ...×Sn from which R is defined
when n = 2, R ⊆ S1×S2 denotes a binary relation and R−1 the symmetrical re-
lation (or inverse) of R, i.e., R−1 = {(y, x) | (x, y) ∈ R}. Let (D , ≺) be a set (of
sets called domains) equipped with a total order and let Ds = {D1, ..., Dn} ⊆ D
be a subset of D ,

∏
(Ds) denotes the Cartesian product of elements of Ds which

respects ≺: we have ∏
(Ds) = D1 × ...×Dn iff D1 ≺ ... ≺ Dn.

3 Constraint Satisfaction Problems

In this section, we shall briefly recall some notations and definitions about Con-
straint Satisfaction Problems [18, 15].

Definition 1. A constraint satisfaction problem P is a 4-tuple (V ,D ,C ,R)
where:

– V = {V1, ..., Vn} is a finite set of variables,
– D = {D1, ..., Dn} is a finite set of domains,
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– C = {C1, ..., Cm} is a finite set of constraints,
– R = {R1, ..., Rm} is a finite set of relations,
such that there exists a bijection between V and D and between C and R.

It should be noted that variables and domains are tightly linked. The same
holds for constraints and relations since a relation denotes the extensional form
of a constraint. With respect to the bijection defined between V and D , we shall
denote var(Di) the variable Vi associated with the domain Di, and dom(Vi) the
domain Di associated with the variable Vi. Note that we can consider, without
loss of generality, that D , i.e. the set of domains of P, is totally ordered by
numbering (from 1 to n) its elements. Hence, any relation ofR is defined without
any ambiguity (cf. definitions in Preliminaries). To define the solution set of a
given CSP P = (V ,D ,C ,R), we need to introduce the following extension. The
extension of a k-ary relation R ∈ R with respect to a domain D ∈ D is the
relation, denoted R ↑ D, defined by:

- R ↑ D = R if D occurs in def(R)2

- R ↑ D = {(a1, ..., aj−1, a, aj, ..., ak) | (a1, ..., ak) ∈ R ∧ a ∈ D} otherwise.
Note that R ↑ D must obey the total order of D . Thus, the position j of the

new element is entirely determined. We shall simply write R ↑ the extension of
any relation R with respect to all domains of P .

Definition 2. (Solution set) Let P = (V ,D ,C ,R) be a CSP, the set of solu-
tions of P , denoted sol(P ), is given by: sol(P ) = ∩{R ↑| R ∈ R}.

Example 1. As an illustration of a CSP, let us consider a matrix composed of
n rows and p columns. The problem consists of placing an object (chosen from
a given set) on each square of this matrix. We know that the set of objects is
structured into categories whose intersection is not necessarily empty. We con-
sider two forms of constraints:
- Row constraints: all objects placed on a row must respect some given
templates where templates denote possible sequences of categories.

- Column constraints: all objects placed on a column must be distinct.

This problem can be understood as a resource allocation problem where rows,
columns and objects respectively denote tasks, steps (operations) and resources.
As an instance of this problem, let us consider n = 5, p = 3 and a set of 6
objects structured in three categories as illustrated in Figure 1 (note that the
object obj2 belongs to categories cat0 and cat1). This problem is clearly a CSP
P = (V ,D ,C ,R) where:

– V = {V0, ..., V14} corresponds to the squares of the matrix,
– D = {D0, ..., D14} with Di = {obj0, obj1, obj2, obj3, obj4, obj5}, ∀i ∈ 0..14

2 To be more rigorous, if D occurs in def(R) must be read as if def(R) = D1×...×Dk

and ∃i ∈ 1..k such that var(Di) = var(D).
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– C = {C0, ...C4} ∪ {C5, C6, C7} corresponds to row and column constraints:
C0 is respectT emplates(V0, V1, V2, t0), ...
C5 is allDifferent(V0, V3, V6, V9, V12), ...

– R = {R0, ..., R7} corresponds to the extensional forms of the elements of C .

The values which are assigned to variables of a respectT emplates constraint Ci

must belong to categories such that the sequence of these categories occurs in
ti. All templates can be found in Figure 1. For instance, t0 = {(cat0, cat0, cat2),
(cat1, cat1, cat2)}.

V12
⇒

⇒

⇒

⇒

⇒

⇒ ⇒ ⇒

 Column constraints 
 allDifferent

 Row constraints 
 respectTemplates

 Domains 
 Objects

 Variables 
 Matrix squares

obj0

obj1

obj2

obj3

obj4

obj5

cat0 cat1
cat2

V13 V14

V9 V10 V11

V6 V7 V8

V3 V4 V5

V0 V1 V2

Fig. 1. Problem P

4 Abstraction

The purpose of this section is to introduce a general description of the abstrac-
tion mechanisms which form the basis of our CSP abstraction proposal. Some
formalism is taken from both the abstract interpretation literature [7, 16] and
the theory of abstraction of [13].

Abstract interpretation [6] can be seen as a theory of approximate compu-
tation [17]. Roughly speaking, it simply consists of approximating a concrete
calculation by an abstract one. Cousot and Cousot [7] and Marriott [16] present
the multiple frameworks for abstract interpretation whose differences essentially
correspond to the way concrete and abstract calculations are linked. The loosest
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link which can be established is formalized by a so-called approximation rela-
tion. In the theory of abstract interpretation, the different frameworks which
have been introduced are based on approximation relations, abstraction func-
tions, concretization functions and Galois connections. The relational frame-
work (which is based on approximation relations) is more general than the other
ones. In the context of recursive program analysis unlike in constraint satisfac-
tion problem abstraction, this may be penalizing since many key theorems of
abstract interpretation no longer hold [16].

On the other hand, Giunchiglia and Walsh [13] define an abstraction as a
mapping between two formal systems which are used to represent problems.
Classes of abstraction are identified depending on how certain properties (i.e.
provability, inconsistency) are preserved by the mapping [12]. The theory of
abstraction of [13] can be applied to domains such as, for instance, theorem
proving and planning.

Let us consider a mapping g (denoting a concrete calculation) and a mapping
g′ (denoting an abstract calculation). In order to establish a correspondence
between g and g′, domains and co-domains of g and g′ must be linked. Notice
that domains and co-domains can be complex structures, i.e., structures that are
established from elementary sets and extension operators. This is the reason why
we introduce a set Ξ = {ξ1, ..., ξn} of binary relations defined from a set E of
elementary sets. A relation ξ of Ξ will be called an approximation relation. For
any pair (d, d′) of elements of def(ξ), ξ(d, d′) means that d′ is an approximation
of d, or in other words, that d is approximated by d′.

From Ξ, it is possible to define the sets Ξ−1 and Ξext. Ξ−1 includes the
inverse relations of elements of Ξ, i.e. Ξ−1 = {ξ−1 | ξ ∈ Ξ}. Ξext is defined
by induction and includes all approximation relations obtained by considering
power-set and Cartesian product extensions.3

Definition 3. (Ξext)

– ∀ξ ∈ Ξ, ξ ∈ Ξext

– ∀ξi ∈ Ξext, we have ξj ∈ Ξext if def(ξi) = D×D′, def(ξj) = ℘(D)×℘(D′)
and ξj(S, S′) iff ∀a ∈ S, ∃a′ ∈ S′ | ξi(a, a′)

– ∀ξi, ξj ∈ Ξext, we have ξk ∈ Ξext if def(ξi) = D ×D′, def(ξj) = E × E′,
def(ξk) = (D × E)× (D′ × E′) and ξk((a, b), (a′, b′)) iff ξi(a, a′) ∧ ξj(b, b′)4

Example 2. To illustrate Definition 3, let us consider the following set Ξ =
{ξ1, ξ2, ξ3} of (elementary) approximation relations.
ξ1 is defined by:

- def(ξ1) = N × {neg, pos}
- ξ1(n, neg) iff n ≤ 0 and ξ1(n, pos) iff n ≥ 0

3 We shall assume that if ξi ∈ Ξext, ξj ∈ Ξext and ξi �= ξj then def(ξi) �= def(ξj).
Otherwise, it will reflect an inconsistency in the definition of Ξ.

4 Some parentheses have been inserted here for more clarity. However, they could be
removed without any ambiguity.
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ξ2 is defined by:
- def(ξ2) = N × {odd, even}
- ξ2(n, odd) iff n is odd and ξ2(n, even) iff n is even

ξ3 is defined by:
- def(ξ3) = {false, true} × {false, true}
- ξ3(false, false) and ξ3(x, true) for any x

Note that ξ1 and ξ2 only preserve the sign and the parity of integers, respectively.
The meaning of ξ3 is: an abstract false value is a guarantee of a concrete false
value and an abstract true value is a suggestion of a concrete true value. Among
others things, Ξext contains the relations ξ4, ξ5 and ξ6 such that:

- def(ξ4) = N × N × {neg, pos} × {neg, pos}
- def(ξ5) = N × N × {neg, pos} × {odd, even}
- def(ξ6) = ℘(N)× ℘({neg, pos})

For example, we have:
ξ3((4,−2), (pos, neg)), ξ4((−5, 3), (neg, odd)) and ξ5({3, 6, 15}, {pos}).

The following definition establishes when a mapping (calculation) represents
an approximation of another one.

Definition 4. Let g : D → E and g′ : D′ → E′ be two mappings and let Ξ be
a set of approximation relation, (g g′ Ξ) is an abstraction5 iff ∃ξ1 ∈ Ξext, ∃ξ2 ∈
Ξext such that def(ξ1) = D × D′, def(ξ2) = E × E′ and ∀(a, a′) ∈ D × D′,
ξ1(a, a′) =⇒ ξ2(g(a), g′(a′)).

Example 3. A classical example of such an abstraction is given by the description
of the rule of signs for multiplication. Let us consider the 3-tuple (×,⊗, Ξ). The
operator × is the usual multiplication defined from N × N to N, the operator ⊗
is defined from {neg, pos} × {neg, pos} to {neg, pos} and is described in Table
1, and Ξ is defined by Example 2.

⊗ neg pos

neg pos neg

pos neg pos

Table 1. Rule of signs

It is clear that ∀(a1, a2) ∈ N×N , ∀(a′1, a′2) ∈ {neg, pos}×{neg, pos}, we have:
ξ4((a1, a2), (a′1, a

′
2)) =⇒ ξ1(a1 × a2, a

′
1 ⊗ a′2). Hence, ⊗ is an approximation of

× via {Ξ}.

5 We shall also say that g′ is an approximation of g via Ξ.
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Example 4. Another illustration can be given in the context of constraint satis-
faction. Let us introduce the following mappings g and g′.
g is defined by:

- g : N × N → {false, true}
- g(x, y) = true iff 2× x = |y| ∧ y < 100

g′ is defined by:
- g′ : {neg, pos} × {odd even} → {false, true}
- g′(x, y) = true iff x′ = pos ∧ y′ = even

It can be shown that g′ is an approximation of g via Ξ (defined by Example 2).
Viewing g and g′ as (trivial) CSPs, one can conclude that any concrete solution
is approximated by at least one abstract solution (cf. the definition of ξ3).

In the following, we shall be interested in getting the abstraction and the
concretization of a set of elements. This is the reason why we introduce the
abstraction function abs and the concretization function con.

Definition 5. Let ξ be an approximation relation such that def(ξ) = D ×D′,
abs and con are two mappings defined from ξ as follows:

– def(abs) = ℘(D)× ℘(D′) and ∀S ⊆ D, abs(S) = {a′ | ∃a ∈ S ∧ ξ(a, a′)},
– def(con) = ℘(D′)× ℘(D) and ∀S′ ⊆ D′, con(S′) = {a | ∃a′ ∈ S′ ∧ ξ(a, a′)}.

For the sake of simplicity, we shall write abs(a) and con(a′) instead of abs({a})
and con({a′}). This restrictive use of abs and con corresponds to abstraction and
concretization functors of [16]. The following properties will be useful later. The
(trivial) proofs are omitted.

Property 1. Let ξ be an approximation relation such that def(ξ) = D × D′,
∀S ⊆ D, ∀S′ ∈ D′, we have:

- con(abs(S)) ⊇ S if ξ−1 is surjective and con(abs(S)) ⊆ S if ξ is injective,
- abs(con(S)) ⊇ S′ if ξ is surjective and abs(con(S′)) ⊆ S if ξ−1 is injective.

Property 2. Let Ξ be a set of approximation relations, if any element of Ξ is
injective (resp. surjective) then any element of Ξext is injective (resp. surjective).
The same holds for Ξ−1.

When elements of E (elementary sets from which approximation relations of
Ξ are defined) are indexed, it is possible to consider a slightly different definition
of Ξext. Indeed, let us consider an approximation relation ξ obtained by Carte-
sian product extension. When necessary, a join operation has to be performed
on ξ in order to remove any redundant elementary set from def(ξ): two sets
with the same index have to be joined. The introduction of this variant of Ξext

is meaningful in the context of CSP abstraction (since a variable can not be
assigned to two different values) and will be considered in the rest of the paper.
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5 Abstraction Base

The idea of CSP abstraction is to establish a correspondence between two CSPs
(called concrete and abstract CSPs) from basic links defined on domains. More
precisely, the set of domains of both CSPs are first structured into subsets.
The result of this operation, which forms the basis of the abstraction, can be
seen as a partition but more generally as a covering. Then, a correspondence
via a bijective mapping must be established between elements of the concrete
and abstract coverings, expressing basic links between concrete and abstract
problems. Finally, an approximation relation must be associated with each such
link. All these elements form the abstraction base.

Definition 6. An abstraction base B is a 6-tuple (D ,D ′,K ,K ′, ϕ, Ξ) where:

– D is a set of (concrete) domains,
– D ′ is a set of (abstract) domains,
– K is a covering of D ,
– K ′ is a covering of D ′ with |K ′| = |K |,
– ϕ is a bijective mapping from K to K ′,
– Ξ = {ξc | c ∈ K } where ξc is an approximation relation associated with c
such that def(ξc) = Π(c)×Π(ϕ(c)). Note that |Ξ| = |K | = |K ′|.
Some features of coverings and approximation relations can be emphasized in

order to characterize abstraction (bases). First, elements of Ξ, i.e. approximation
relations, can be expressed in terms of (concrete and abstract) value clustering.
An approximation relation ξ denotes:

- an elementary (concrete) value clustering iff ξ and ξ−1 are injective,
- a simple (concrete) value clustering iff ξ is not injective and ξ−1 is injective,
- a general (concrete) value clustering otherwise.
An illustration is given in Figure 2 . Concrete values are represented on the

left of each diagram and form three clusters. Note that these definitions can
be adapted with respect to abstract value clustering. Second, K and K ′, i.e.
coverings can be expressed in terms of (concrete or abstract) variable clustering.6

A covering denotes:
- an elementary variable clustering iff it is an elementary partition,
- a simple variable clustering iff it is a partition which is not elementary,
- a general variable clustering otherwise.
It is noteworthy that variable clustering can be achieved with respect to both

concrete and abstract variables. Thus, n concrete variables can be linked (via ϕ)
with m abstract variables.

Example 5. A “natural” abstraction of the problem which have been described
in Section 3 consists of considering categories instead of objects. The abstraction
base B = (D ,D ′,K ,K ′, ϕ, Ξ) is illustrated in Figure 3 and defined as below:

– D = {D0, ..., D14} with Di = {obj0, obj1, obj2, obj3, obj4, obj5} ∀i ∈ 0..14
– D ′ = {D′

0, ..., D
′
14} with D′i = {cat0, cat1, cat2} ∀i ∈ 0..14

6 You can read variable or domain (clustering) since they are intrinsically linked.
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Fig. 2. Value clustering: (a) elementary, (b) simple, (c) general

– K = {{D0}, ..., {D14}}
– K ′ = {{D′

0}, ..., {D′
14}}

– ϕ is defined by: ϕ({Di}) = {D′
i} ∀i ∈ 0..14

– Ξ = {ξc | c ∈ K } where def(ξc) = Di ×D′
i (if c = {Di}) and ξc(objp, catq)

iff objp ∈ catq

Note that the elements of Ξ correspond to general (concrete) value clustering
and that K and K ′ correspond to elementary variable clustering.

Property 3. For any abstraction base B = (D ,D ′,K ,K ′, ϕ, Ξ), there exists an
approximation relation ξ ∈ Ξext such that def(ξ) = Π(D)×Π(D ′).

Proof. On the one hand, when K and K ′ are partitions, this is immediate.
Since there exists a bijection ϕ between K and K ′, ξ corresponds to a simple
Cartesian product extension of all elements of Ξ. On the other hand, when K
or K ′ are not partitions, the existence of ξ is guaranteed by the fact that K
and K ′ are coverings (i.e. cover all elements of D and D ′) and by considering
the variant of the definition of Ξext as described at the end of Section 4. ♦

6 CSP Abstraction

A CSP abstraction consists of two CSPs and an abstraction base which expresses
links between these two problems. The issue of correctness is postponed until
the next section.

Definition 7. A CSP abstraction is a 3-tuple (P, P ′, B) where P = (V ,D ,C ,R)
and P ′ = (V ′,D ′,C ′,R′) are two CSPs and B = (D ,D ′,K ,K ′, ϕ, Ξ) is an
abstraction base.
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Fig. 3. Abstraction Base

Following the approach of [13], is is possible to classify a CSP abstraction as
below.

Definition 8. Let (P, P ′, B) be a CSP abstraction with P = (V ,D ,C ,R), P ′ =
(V ′,D ′,C ′,R′) and B = (D ,D ′,K ,K ′, ϕ, Ξ), (P, P ′, B) is said to be:

– a (strong) SD abstraction iff
(1) elements of Ξ are surjective
(2) ∀R ∈ R, ∃R′

s ⊆ R′ s.t. R ↑⊇ con(∩{R′ ↑| R′ ∈ R′
s})

– a (strong) SI abstraction iff
(3) elements of Ξ−1 are surjective
(4) ∀R′ ∈ R′, ∃Rs ⊆ R s.t. R′ ↑⊇ abs(∩{R ↑| R ∈ Rs})

where abs and con are the abstraction and concretization functions associated
with the approximation relation ξ ∈ Ξext such that def(ξ) = Π(D)×Π(D ′) and
“S” stands for “Solution”, “D” for “Decreasing” and “I” for “Increasing”.

Condition (1) imposes that all abstract values represent the approximation of
at least one concrete value and Condition (2) imposes that any concrete relation
must contain the concretization of a set of abstract relations. Taken together,
Conditions (1) and (2) ensure that for any abstract solution s′, there is a concrete
solution which is approximated by s′ (see Proposition 1 of Section 7). Hence, it
justifies the SD abstraction term. Similarly, Conditions (3) and (4) ensure that
for any concrete solution s, there is an abstract solution which approximates s
(see Corollary 1 of Section 7). Hence, it justifies the SI abstraction term.

When considering a ground problem P , trivial examples of SD abstraction
can be built from P by inserting new constraints and/or removing values. Anal-
ogously, trivial examples of SI abstraction can be built from P by removing
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constraints and/or inserting new values. There is a strong connection between
SD abstraction and SI abstraction as established by the following property.

Property 4. Let (P, P ′, B) be a CSP abstraction with P = (V ,D ,C ,R), P ′ =
(V ′,D ′,C ′,R′) and B = (D ,D ′,K ,K ′, ϕ, Ξ), (P, P ′, B) is a (strong) SD ab-
straction iff (P ′, P, B̃) is a (strong) SI abstraction where B̃ = (D ′,D ,K ′,K ,

ϕ̃, Ξ̃) with ϕ̃ = ϕ−1 and Ξ̃ = Ξ−1.

Proof. – (P, P ′, B) is a (strong) SD abstraction iff
(a) elements of Ξ are surjective
(b) ∀R ∈ R, ∃R′

s ⊆ R′ such that R ↑⊇ con(∩{R′ ↑| R′ ∈ R′
s}) where con is

the concretization function associated with the approximation relation
ξ such that def(ξ) = Π(D) × Π(D ′). Thus, con is defined as follows:
∀S′ ⊆ Π(D ′), con(S′) = {v | ∃v′ ∈ S′ s.t. ξ(v, v′)}

– (P ′, P, B̃) is a (strong) SI abstraction iff
(a’) elements of Ξ−1 are surjective
(b’) ∀R′ ∈ R′, ∃Rs ⊆ R such that R′ ↑⊇ ãbs(∩{R ↑| R ∈ Rs}) where ãbs

is the abstraction function associated with the approximation relation
ξ̃ such that def(ξ̃) = Π(D ′) × Π(D). Thus, ãbs is defined as follows:
∀S′ ⊆ Π(D ′), ãbs(S′) = {v | ∃v′ ∈ S′ s.t. ξ̃(v′, v)}

First, note that (a) ⇔ (a′) since Ξ = Ξ̃−1 (as Ξ̃ = Ξ−1 and Ξ−1−1
= Ξ).

Second, note that (b)⇔ (b′) since con = ãbs (as ξ = ξ̃−1and ξ(v, v′)⇔ ξ̃(v′, v)).
Then, the property holds. ♦

Below, we introduce the definition of a weaker form of CSP abstraction.

Definition 9. Let (P, P ′, B) be a CSP abstraction with P = (V ,D ,C ,R), P ′ =
(V ′,D ′,C ′,R′) and B = (D ,D ′,K ,K ′, ϕ, Ξ), (P, P ′, B) is said to be:

– a weak SD abstraction iff
(1’) elements of Ξ are surjective
(2’) ∀R ∈ R, ∃R′

s ⊆ R′ such that abs(R ↑) ⊇ ∩{R′ ↑| R′ ∈ R′
s}

– a weak SI abstraction iff
(3’) elements of Ξ−1 are surjective
(4’) ∀R′ ∈ R′, ∃Rs ⊆ R such that con(R′ ↑) ⊇ ∩{R ↑| R ∈ Rs}

where abs and con are the abstraction and concretization functions associated
with the approximation relation ξ ∈ Ξext such that def(ξ) = Π(D)×Π(D ′).

The connection between strong and weak CSP abstraction is given by Prop-
erties 5 and 6. Proofs (omited here) are immediate by using Properties 1 and 2
of Section 4 and Conditions of Definitions 8 and 9.

Property 5. a (strong) CSP abstraction is a weak CSP abstraction.

Property 6. A weak SD abstraction is a (strong) SD abstraction if all approxi-
mation relations are injective. A weak SI abstraction is a (strong) SI abstraction
if the inverse of all approximation relations are injective.
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Example 6. Let us consider the following CSP P ′ which is a “natural” approx-
imation of the problem P of Example 1 via the abstraction base B of Example
3. P ′ = (V ′,D ′,C ′,R′) where:

– V ′ = {V ′
0 , ..., V

′
14} corresponds to the squares of the matrix,

– D ′ = {D′
0, ..., D

′
14} with D′

i = {cat0, cat1, cat2}, ∀i ∈ 0..14
– C ′ = {C′

0, ...C
′
4} ∪ {C′

5, C
′
6, C

′
7} corresponds to row and column constraints:

C′
0 is respectT emplates(V ′

0, V
′
1 , V

′
2 , t

′
0), ...

C′
5 is respectCardinalities(V ′

0 , V
′
3 , V

′
6 , V

′
9 , V

′
12), ...

– R′ = {R′
0, ..., R

′
7} corresponds to the extensional forms of the elements of

C .

V′12

⇒

⇒

⇒

⇒

⇒

⇒ ⇒ ⇒

 Column constraints 
 respectCardinalities

 Row constraints 
 respectTemplates

 Domains 
 Categories

 Variables 
 Matrix squares

cat0

cat1

cat2

V′13 V′14

V′9 V′10 V′11

V′6 V′7 V′8

V′3 V′4 V′5

V′0 V′1 V′2

Fig. 4. Problem P ′

As domains have already been introduced in the abstraction base B, we shall
simply describe the constraints of P ′. First, since the abstraction consists in
considering categories instead of objects, row constraints can be directly coded
into the abstract problem (by using t′i = ti). Second, when abstracting column
constraints, the only way to preserve some information is to base the reasoning on
the cardinality of the different categories. For instance, the number of variables
which are assigned to a given category cat cannot be greater than the cardinality
of cat. Once the problem P ′ is fully described, one may wonder whether (P, P ′, B)
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represents a SI abstraction. For any relation R′ of P ′ corresponding to a column
constraint, Conditions (3) and (4) of Definition 8 hold. On the other side, for
any abstract relation R′ corresponding to a row constraint, Conditions (3’) and
(4’) of Definition 9 hold. In conclusion, (P, P ′, B) is only a weak SI abstraction
and as explained in the next section, this has an impact on correctness.

Before concluding this section, one should observe that when the concrete
problem P = (V ,D ,C ,R) and the abstraction base B are given, it is possible
to automatically build the abstract CSP. One way to proceed consists in simply
abstracting concrete relations. For any concrete relation R, an abstract relation
R′ is then defined to satisfy: R′ ↑= abs(R ↑). In this case, R′ can express
no information (R′ ↑= Π(D ′)), less information than R (con(R′ ↑) ⊇ R ↑)
and as much information as R (con(R′ ↑) = R ↑). However, abstracting all
concrete relations in an independent way may sometimes lead to a drastic loss
of information. This is the reason why it is sometimes more interesting to build
an abstract relation from a set of concrete relations.

7 Correctness

In the first part of this section, correctness of strong abstractions is proven. In
the second part, we propose an alternative to cope with weak abstractions.

Proposition 1. Let (P, P ′, B) be a (strong) SI abstraction, we have ∀s ∈
sol(P ), ∃s′ ∈ sol(P ′) such that ξ(s, s′).

Proof. First, notice that ξ−1 is surjective since elements of Ξ−1 are surjective by
definition and this property is preserved by extension (cf. Property 2). Hence,
we know that ∀s ∈ sol(P ), ∃s′ ∈ Π(D ′) such that ξ(s, s′).

s ∈ sol(P )
=⇒ ∀R ∈ R, s ∈ R ↑ by definition
=⇒ ∀Rs ∈ R, s ∈ ∩{R ↑| R ∈ Rs}
=⇒ ∀Rs ∈ R, abs(s) ⊆ abs(∩{R ↑| R ∈ Rs}) since abs is monotonic
=⇒ ∀Rs ∈ R, s′ ∈ abs(∩{R ↑| R ∈ Rs}) since ξ(s, s′)

(P, P ′, B) is a (strong) SI abstraction
=⇒ ∀R′ ∈ R′, ∃Rs ⊆ R s.t. R′ ↑⊇ abs(∩{R ↑| R ∈ Rs}) by definition
=⇒ ∀R′ ∈ R′, s′ ∈ R′ ↑ by using (a)
=⇒ s′ ∈ sol(P ′). ♦

Corollary 1. Let (P, P ′, B) be a (strong) SD abstraction, we have ∀s′ ∈ sol(P ′),
∃s ∈ sol(P ) such that ξ(s, s′).

Proof. (P, P ′, B) is a (strong) SD abstraction iff (P ′, P, B̃) is a (strong) SI ab-
straction. (P ′, P, B̃) is a (strong) SI abstraction =⇒ ∀s′ ∈ sol(P ′) ∃s ∈ sol(P )
such that ξ̃(s′, s). As ξ̃ = ξ−1, we have: ∀s′ ∈ sol(P ′), ∃s ∈ sol(P ) | ξ(s, s′). ♦
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Corollary 2. Let (P, P ′, B) be a CSP abstraction,
- if (P, P ′, B) is a (strong) SI abstraction then sol(P ) ⊆ con(sol(P ′)),
- if (P, P ′, B) is a (strong) SD abstraction then sol(P ) ⊇ con(sol(P ′)).

The following example points out that the correctness of weak forms of ab-
straction is not guaranteed.

Example 7. Let us consider the following CSP abstraction (P, P ′, B)7:
P = (V ,D ,C ,R) s.t. V = {V }, D = {{1, 2, 3}} , C = {V = 2},
P ′ = (V ′,D ′,C ′,R′) s.t. V ′ = {V ′}, D ′ = {{a, b}} , C ′ = {V ′ = a, V ′ = b},
B = (D ,D ′,K ,K ′, ϕ, Ξ) s.t. Ξ = {ξ} with ξ(1, a), ξ(2, a), ξ(2, b), ξ(3, b).
It is easy to show that (P, P ′, B) is a weak SI abstraction but not a (strong) SI

abstraction. Note the impact on correctness since sol(P ) = {2} and sol(P ′) = ∅.
The origin of the problem lies in the existence of a concrete value which is
approximated by two different abstract values.

As weak abstractions may suffer from the lack of correctness, we introduce a
“reformulation method” below. However, let us point out that we shall restrict
ourselves to SI abstractions with elementary variable clustering and fix (P, P ′, B)
with P = (V ,D ,C ,R), P ′ = (V ′,D ′,C ′,R′), and B = (D ,D ′,K ,K ′, ϕ, Ξ).
The reformulation method consists of a (full) reformulation of the CSP ab-
straction (P, P ′, B) into a new CSP abstraction (P, P̃ ′, B̃) = ref(P, P ′, B) with
P̃ ′ = (Ṽ ′, D̃ ′, C̃ ′, R̃′) and B̃ = (D , D̃ ′,K , K̃ ′, ϕ̃, Ξ̃) such that:

– D̃ ′ = {ref(D′) | D′ ∈ D ′} where D̃′ = ref(D′) is the set of equivalence
classes obtained from the relation ≈ defined as follows: ∀a ∈ D, ∀b ∈ D,
a ≈ b iff abs(a) = abs(b) where D = ϕ−1(D′),

– Ξ̃ = {ref(ξ) | ξ ∈ Ξ} where ξ̃ = ref(ξ) is the relation defined as follows:
∀a ∈ D, ∀ã ∈ D̃ , ξ̃(a, ã) iff a ∈ ã,

– K̃ ′ and ϕ̃ are simply an adaptation of K ′ and ϕ w.r.t. D̃ ′ instead of D ′,
– R̃ = {ref(R′ | R′ ∈ R′} where R̃′ = ref(R′) is ãbs(conc(R′)).

Example 8. Let (P, P ′, B) be the weak SI abstraction described by Examples 1,
5 and 6, (P, P̃ ′, B̃) = ref((P, P ′, B) where P̃ ′ and B̃ are depicted in Figures 5
and 6.

When using reformulation, the correctness of a weak SI abstraction is en-
sured. Indeed, one can show that (P, P̃ ′, B̃) is complete with respect to (P, P ′, B),
that is to say sol(P ) ⊆ c̃on(sol(P̃ ′)) (and con(sol(P ′)) ⊆ c̃on(sol(P̃ ′))). Proving
the validity of this approach is beyond the scope of this paper.

One may legitimately wonder if general value clustering is essential. In fact,
the important issues of declarativity and complexity have to be addressed. On
the one hand, we are convinced that using a general clustering allows more
declarative and natural formulations of abstraction. And even if correctness is
7 Trivial elements are not described below.
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not guaranteed (when the abstraction is weak), it is always possible to automat-
ically reformulate the abstract problem in order to get a (strong) abstraction.
On the other hand, in order to transform (a SI abstraction with) a general value
clustering into a simple one, a reformulation must be performed. As a conse-
quence, the domains (of the new abstract problem) are larger than the original
ones. Besides, the number of tuples allowed by constraints are more important.
Then, constraint checks become more expensive. Thus, when a CSP abstraction
(P, P ′, B) is strong, one should be optimistic about the complexity of solving
P by using (directly, ie. without reformulation) (P, P ′, B) with respect to the
complexity of solving it by using ref(P, P ′, B).

8 Some Results

In this section, some partial but representative results are presented. A prototype
called “AbsCon” has been implemented in C++. In AbsCon, you have to code
the (binary or n-ary) constraints of your problem(s) and the approximation
relation(s). AbsCon offers the user two solving methods: a classical one and a
hybrid one. The classical method is based on a backtracking search algorithm
using the fail-first heuristic and NFC-2 [1] as a propagation method. The hybrid
method is composed of three elements: the abstract solver, the concretisator
and the concrete solver. In fact, the abstract and concrete solvers use the same
algorithm as the classical one.

The experiments reported here were done using instances of the problem of
Example 1. Classical sets of instances are characterized by a 4-tuple (n,m, p1, p2)
where n is the number of variables, m the number of values in each domain,
p1 the constraint density and p2 the constraint tightness. A phase transition
from under-constrained to over-constrained problems has been observed (e.g.
[19, 21]) on random binary CSPs as p2 varies while n,m, p1 are kept fixed.
With respect to our (n-ary) problem, n corresponds to r ∗ c where r is the
number of rows and c the number of columns whereas m corresponds to the
number o of objects. p1 is entirely determined from r + c and p2 is determined
from the global number t of templates and the number of objects. Our sets of
instances will be referred to by the tuple (r ∗ c, o, t) that roughly corresponds
to (n,m, (1 − p2)). Note that the number of categories and the percentage of
objects which belong to more than one category has been respectively fixed to√
o and 15 (rounded to the nearest integer). At each setting of (r ∗ c, o, t), 100

instances were randomly generated. For example, the problem instance of Figure
1 belongs to the class (5 ∗ 3, 6, 11). Solving an instance consists of either finding
a solution or determining inconsistency.

We have generated two kinds of CSP instances in order to deal with weak
and strong SI abstractions. First, let us consider weak SI abstractions. We have
compared the classical solver (CS) with the hybrid solver (HS+) using the refor-
mulation method described in Section 7. Figure 7 shows what happens when t is
varied from 5 to 45 (approximatively corresponding to the phase transition) with
respect to the sets (5 ∗ 5, 5, t). The mean and median search effort is measured
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in terms of constraint checks (Note the use of the logarithmic scale). Clearly,
the hybrid method with reformulation outperforms the classical one. These re-
sults are confirmed by CPU time measures. Second, let us consider strong SI
abstractions. We have compared CS, HS+ and the hybrid method (HS) using
no reformulation. Figure 8 shows what happens when t is varied from 5 to 25
with respect to the sets (5 ∗ 5, 5, t). The mean search efforts of HS and HS+
are quite close even if HS+ is slightly better than HS. Nevertheless, due to the
reformulation, the cost of checking constraints is more expensive for HS+. This
is shown in Figure 9 where the mean search effort of HS+ is now slightly worse
than HS. To conclude, it seems difficult to decide between HS and HS+ but we
conjecture that HS and HS+ have “regions” of predilection.
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Fig. 7. Median, mean, max and min constraint checks for (5 ∗ 5, 5, t)

9 Related Works

To our best knowledge, only two works were devoted to defining general frame-
works of CSP abstraction. The first proposition was given by Caseau [2] which
uses abstract interpretation in order to improve the efficiency of constraint res-
olution in an object-oriented context. Essential differences with our work reside
in two points. Caseau [2] uses a Galois connection framework and exploits the
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structure of the domains whereas we use a relational framework and make no
hypothesis about domain structures. The second proposition was given by Ell-
man [9] which defines two kinds of approximation using symmetries. Roughly
speaking, range and domain symmetry approximations can be understood as
simple value and variable clustering.

Works about interchangeability are the core of numerous CSP abstractions.
Several types of interchangeability have been introduced [11, 10, 5] to capture
equivalences between values. As interchangeable values form equivalence classes,
a new (abstract) problem can be viewed in terms of these equivalence classes
[10]. Chouery et al. [3, 4] propose a heuristic to decompose a resource allo-
cation problem into abstractions that reflect interchangeable sets of tasks and
resources. This heuristic is applicable to constraints of mutual exclusion. Also,
some works implicitly rely on abstraction in order to handle more compact rep-
resentations of values [22] and to avoid redundant search [14]. Most of these
works can be viewed as simple value clustering and/or variable clustering. More
specific propositions of CSP abstractions include works of Shrag and Miranker
[20] who consider domain abstraction with respect to random CSPs in order to
determine unsatisfiability.
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10 Conclusion

The main contribution of this paper is the description of a general framework in
which many forms of abstraction can be modeled. Indeed, most CSP abstractions
proposed in the literature can be directly integrated in this framework since
most of them correspond to simple value or variable clustering. As succinctly
illustrated in this paper, more complex forms of abstraction which correspond
to general value and variable clustering can be dealt with. On the other hand,
correctness is an important issue. This is the reason why we have tried to find
minimal properties in order to guarantee sound and complete abstractions.

In this paper, only general value clustering has been studied. We argue that
this kind of clustering is an asset since the user is enabled to define natural and
declarative abstractions without distorting problems (by adding artificial values
and tuples). Besides, the results (constraint checks and CPU times) obtained
by HS (which directly deals with general value clustering) seem to be quite
promising and equivalent to those of HS+. We conjecture that HS and HS+
most probably have “regions” of predilection. A study on problem spaces (such
as the work of [20]) could provide interesting information about the effectiveness
of these methods. On the other hand, a full study still remains to be carried out
with respect to general variable clustering.
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One perspective of this work is to study the interest of different uses of
CSP abstractions. Following [13], we can make a distinction, on the one side,
between deductive and adductive uses and, on the other side, between positive
and negative uses. For instance, in the context of a SD abstraction, the existence
of an abstract solution is a guarantee that a concrete solution exists (positive
deductive use) whereas, in the context of a SI abstraction, the existence of an
abstract solution is simply a suggestion that there is a concrete solution (positive
adductive use). Another perspective is to extend this work in order to deal with
constraint optimization problems (COPs). From a CSP abstraction, it seems
possible to build a “canonical” COP abstraction. Indeed, we believe that an
abstract valuation function can be automatically derived from a concrete one
and an abstraction base. This approach (that we are currently studying) can be
related to the work of [8] where the authors propose to simplify (approximate)
the valuation function of a constraint optimization problem (viewed as a valued
constraint satisfaction problem) in order to bound its optimum. However, it is
important to note that [8] do not consider constraint abstraction.
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Abstract. Computer programs written by humans are largely com-
posed of instances of well-understood data and procedural abstractions.
Clearly, it should be possible to generate programs automatically by
reuse of abstract components. However, despite much effort, the use of
abstract components in building practical software remains limited.

We argue that software components constrain and parameterize each
other in complex ways. Commonly used means of parameterization of
components are too simple to represent the multiple views of compo-
nents used by human programmers. In order for automatic generation of
application software from components to be successful, constraints be-
tween abstract components must be represented, propagated, and where
possible satisfied by inference.

A simple application program is analyzed in detail, and its abstract com-
ponents and their interactions are identified. This analysis shows that
even in a small program the abstractions are tightly interwoven in the
code. We show how this code can be derived by composition of separate
generic program components using view types. Next we consider how the
view types can be constructed from a minimal specification provided by
the user.

1 Introduction

The goal of constructing software applications from mass-produced software
components has been sought since McIlroy’s classic paper [14] in 1968. Although
there is some reuse of components in applications programming today, much code
is still written by hand in languages that are little changed from the Fortran of
the 1950’s.

Despite the many approaches to component technology, why have reusable
software components had so little impact [22] ? We argue that existing compo-
nent technologies are not abstract enough and that automated tools for combin-
ing and specializing abstract components are needed.

When considering a programming technology, the reader may naturally be
tempted to think “this problem could be solved using language X.” Of course
this is true: any problem can be solved in any of the programming languages.
However, the software problem can be solved only by a method of programming
that meets all of the following criteria:

B.Y. Choueiry and T. Walsh (Eds.): SARA2000, LNAI 1864, pp. 185–201, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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1. The programs produced must be comparable in efficiency to hand-written
code. Programming is unique among engineering disciplines in that it is easy
to create programs that are extremely inefficient; for example, sorting can
be done in O(n · log n) time, but it is easy to write sorting algorithms with
performance that is O(n2) or even exponential.

2. The amount of programmer input must be minimized. Programmers pro-
duce a small number of lines of code per day, relatively independent of the
language used. Only by minimizing the amount of user input can progress
be made.

3. The amount of programmer learning must be minimized. Human learning is
slow and must be regarded as a major cost. If a programmer must learn the
details of a library of classes and methods, the learning cost detracts from
the benefits of reuse.

We have previously developed systems that can specialize generic procedures1

for an application based on views. A view [20][21] makes a concrete (application)
data type appear to be an instance of an abstract type by defining the properties
expected by methods of the abstract type in terms of the concrete type. Figure 1
shows how a generic procedure is specialized through a view type. For example,
an abstract type circle may expect a radius, but an application type pizza
may be defined in terms of diameter; a view type pizza-as-circle defines the
radius needed by circle in terms of diameter of the pizza, allowing generic
procedures of circle to be specialized for type pizza. A view is analogous to a
wrapper type in OOP [4], except that a view is virtual and does not modify or
add to the concrete type. Recursive in-line compilation and partial evaluation of
the translation from concrete type to abstract type result in efficient code.

Concrete

Type

View

Type

GLISP

Compiler

Generic

Procedure

Specialized

Procedure

?

- -

?

Fig. 1. Specialization of Generic Procedure

We have produced an Automatic Programming Server (APS), available over
the web.2 APS allows the user to describe application data and make views of
1 We use the terms generic procedure and abstract procedure synonymously.
2 See http://www.cs.utexas.edu/users/novak . A Unix system running X windows
is needed to run the server; any browser can view examples and documentation.
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that data as abstract types known to the system (including both mathematical
types, e.g. circle, and data structure types, e.g. an AVL tree). Once a view
has been made, APS can synthesize specialized versions of generic procedures
and deliver them to the user in the desired language (currently Lisp, C, C++,
Java, or Pascal). APS allows hundreds of lines of correct application code to
be obtained in a few minutes of interaction. A related system, VIP [17] (also
available on the web), allows scientific programs to be constructed graphically
from diagrams of physical and mathematical principles and relations between
them.

APS and VIP synthesize useful program components, with the human user
performing the overall system design and design of data structures. The success
of APS and VIP suggests that it should be possible to generate whole application
programs by describing the programs at a high level of abstraction and then syn-
thesizing the code automatically by specialization of generic procedures, as APS
does presently. This paper considers the kinds of abstractions and interactions
of abstractions that are necessary to enable such synthesis.

The paper is organized as follows. The interactions of abstractions in pro-
grams are illustrated by a detailed analysis of a simple hand-written program.
Next, we show how view types in the GLISP language [16] allow a similar pro-
gram to be compiled automatically from a set of reusable generic components.
The view types needed are complex; automated support is needed to allow these
types to be constructed from a minimal specification using constraint propaga-
tion and inference. A final section considers related work.

2 An Example Application

To illustrate the interactions of abstractions in programs, we consider a small
hand-written Lisp program: given as input a list of sublists, each of which has
the format (key n), the program sums the values n for each key; an associ-
ation list alist is used to accumulate the answer. For example, given the in-
put list ((a 3) (b 2) (c 1) (a 5) (c 7)) the program produces the output
((C 8) (B 2) (A 8)).

(defun alsum (lst)
(let ((alist nil) entry)
(dolist (item (identity lst))

(setq entry
(or (assoc (car item) alist)

(progn (push (list (car item) 0 ) alist)
(assoc (car item) alist))))

(incf (cadr entry) (cadr item) ) )
alist))

Although this is a very small application program, it is built from numerous
abstract software components. Different type fonts are used to indicate code
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associated with the abstract software components described below; a glance at
the code shows that the different components are tightly interwoven in the code.

The overall program is an instance of an abstract program we call Iterate-
Accumulate: the program iterates through some sequence derived from its input,
producing a sequence of items, then accumulates some aspect of the items. This
abstract program encompasses a wide range of possible applications, such as
updating a bank account, averaging grades, counting occurrences of different
words in a text file, numerically integrating a function, computing the area of a
polygon, etc. In the above example, the accumulator is also an abstract proce-
dure called Find-Update, which looks up a key in some indexing structure, then
updates the entry that is found. The abstract programs Iterate-Accumulate and
Find-Update are parameterized in the following ways:

1. The sequence over which to iterate must be extracted from the input. We
have inserted the code (identity lst) in the example to emphasize this step,
which is trivial for this example.

2. An iterator is used to step through the sequence (in this case dolist is used,
since the sequence is a list).

3. The item of the sequence contains the key field used to index the alist and
the number to be summed. The access functions for these fields are shown
in italics, e.g. (car item) to access the key field.

4. An association list alist is used as an indexing structure to index entries by
key field. Code associated with the alist structure is shown in typewriter
font. The alist entry also contains data for the accumulator.

5. An accumulator, in this case an adder, is used to accumulate values. Code
associated with the adder is shown in bold font. The storage of the adder
is part of the alist entry record, and its initial value, 0, must be used when
creating a new alist record.

How do we know that these are the correct abstractions for this program? A
substitution test is useful: the application could be modified by substitution of a
different component for each of the above components, affecting only the corre-
sponding parts of the program code. For example, an array could be substituted
for the linked list input, requiring the iterator to be changed; the alist of item
4 could be changed by using an AVL tree to index keys (giving faster lookup at
the cost of more code); the adder accumulator of item 5 could be changed to
accumulate the product of numbers rather than their sum.

3 Abstract Software Components

We claim that, with few exceptions, effectively reusable software components
must be abstract.3 Without abstraction, there must be a combinatoric number

3 The exceptions are components such as math functions and matrix subroutines,
where the arguments will always be of a simple type. Such components are the ones
most commonly reused at present.
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of versions of a component (e.g. Batory [2] found that there are over 500 versions
of components in the Booch library, corresponding to combinations of many
fewer features of the components); this quickly becomes untenable. We take the
opposite position: there should be only one abstract version of a component that
should serve for all uses.

If there is only a single abstract version of a component, it clearly will have
to be specialized for each application. The GLISP compiler can specialize a
generic procedure through views. Specialization capabilities include data struc-
ture variations, changes in the set of parameters used to describe a mathematical
concept, changes in units of measurement, and algorithm options (partial evalu-
ation of conditional tests causes desired code to be retained and undesired code
to vanish). Specialized procedures are mechanically translated into the desired
target language; this makes the languages used for the tools and generic pro-
cedures (Lisp and GLISP) independent of the language used for an application
and allows a single set of tools and generics to satisfy all uses.

Existing systems such as APS allow individual software components to be
specialized for an application. Our goal is:

– to synthesize a complete application program,
– with most of the synthesized code coming from independent abstract com-

ponents,
– from a minimal specification.

Object-oriented programming provides an attractive model for abstract software
components:

– In general, software components need to have state, e.g. the sum variable
used by an adder; objects provide state.

– OOP provides a way to group related procedures with the class of objects
to which they apply.

– OOP provides inheritance, allowing abstraction of methods common to re-
lated classes.

Despite these advantages, OOP per se does not provide much leverage for solving
the software problem:

– To use OOP, a human must understand the classes to be used and their
interfaces.

– A human must manually write code to interface between object classes.
– To obtain the equivalent of our views, it is necessary to define wrapper classes

that make one kind of object look like another.
– OOP exacts a high price in both storage (due to creation of wrapper objects

that are soon discarded) and execution time (due to message interpretation
and garbage collection).

It is possible to write programs such as our example using OOP to reuse generic
classes and methods (and we have done so). The techniques described below
could be used with little change to generate OOP wrappers and glue code, but
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the implementation using view types is more efficient. View types can be thought
of as zero-weight virtual wrapper objects, in which the wrapper is eliminated by
compile-time type inference and propagation and the overhead of method lookup
is eliminated by partial evaluation [7].

3.1 Abstract Procedural Components

The abstract procedural components Iterate-Accumulate and Find-Update are
shown below. Although the GLISP language allows message sends to be written
in functional form (as in CLOS), we have shown them using the send syntax for
emphasis. The syntax (send acc initialize), meaning send to the object acc
a message whose selector is initialize, would be written (initialize acc)
using the functional syntax.

(gldefun itacc (input:anything acc:anything)
(let (seq item iter)
(acc := (a (typeof acc)))
(send acc initialize)
(seq := (send input sequence))
(iter := (send seq make-iterator))
(while (not (send iter done))

(item := (send iter next))
(acc := (send acc update item)) )

acc))

(gldefun findupd (coll:anything item:anything)
(let (entry)
(entry := (send coll find (send item key)))
(if (null entry)

(coll := (send coll insert (send item key)))
(entry := (send coll find (send item key))))

(send entry update item)
coll ))

In the generic procedure itacc, the arguments are both described as having
type anything; when the procedure is specialized, actual types are substituted.
Generic procedures are written in such a way that all type parameters are the
types of arguments (or can be derived from argument types). Any types that
were hard-coded within a generic would be unchangeable, and thus would limit
its reusability. The parameter acc is purely a type parameter, since this variable
is initialized within the procedure.4 The code (a (typeof acc)) causes creation
of a new data object whose type is the same as the type of the “argument” acc.

The code (seq := (send input sequence)) extracts the desired sequence
from the input. Note that this code assumes that the actual input type is
4 It is desirable to eliminate acc as a formal argument and convert it a local variable,
but we have not implemented this.
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wrapped by a view type that will implement the sequence method; this view
is specified as the type when itacc is specialized. This view type is application
dependent: the input could have multiple sequences, and there could be varia-
tions of those sequences, e.g. employees with dependents, that are defined. The
sequence is assumed to define a way to make an iterator for itself, producing
items; the item must have a wrapped type, since the features to be extracted
from the item (in this case, the key value used for indexing and the value to be
accumulated) are application-dependent. The sequence must also be wrapped to
produce items with the proper view type wrapper.

3.2 Abstract Components with State

GLISP type definitions for the abstract components list-iterator, alist,
and adder are shown below. Each definition gives the name of the type, a data
structure description, and definitions of methods associated with the type. For
example, the generic alist has a data structure that is a listof elements,
each of which is a cons of a key field and arbitrary rest data; the messages
initialize, find, and insert are defined for the alist as small bits of code
that are expanded inline when used.

(list-iterator (lst (listof anything))
msg ((done ((null lst)))

(next ((pop lst)))))

(alist (listof (cons (key anything)
(rest anything)))

msg ((initialize (nil))
(find (glambda (self key) (assoc key self)))
(insert (glambda (self key)

(cons
(send (a (typeof (first self)) with key = key)

initialize)
self)))) )

(adder (sum number)
prop ((initial-value (0)) )
msg ((init ((sum := (initial-value self))))

(update (glambda (self (item number))
((sum self) _+ item)))

(final (sum))))

Each of these components is abstract, including only the minimum informa-
tion necessary to specify its own aspects of behavior. For example, alist defines
the behavior of an association list in a way that matches the interface to an index-
ing structure used by Find-Update, but it is independent of the other information
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contained in an alist entry, which is specified only as (rest anything).5 Note
the use of the construction (a (typeof (first self))...) to create a new
entry for the alist and initialize it6: this code is abstract and will create a new
instance of the application alist record and initialize it appropriately.

3.3 Parameterization of Components

The components described above have been designed to be as abstract as pos-
sible, without making any unnecessary assumptions about the context of their
uses. Where parameterization or features of context are needed, the abstract
components use indirection, as in (a (typeof (first self))...), or send
messages to themselves or to substructures. These techniques allow the compo-
nents to be abstract and to be used unchanged across a variety of applications,
with parameterization and glue code being concentrated in view type wrappers.
This avoids the need to modify code in order to specialize procedures; in contrast,
the Programmer’s Apprentice project [23] [24] modified code, which introduces
considerable complexity. In this section, we describe view types that connect the
abstract components, allowing an application to be generated by specialization.

It is useful to think of the program as existing at both an abstract level and
an implementation level, with a morphism holding between the levels; this notion
is formalized in SPECWARETM [27]. At the abstract level, Iterate-Accumulate
iterates through a sequence of items, accumulating them; at the implementation
level are the details of the kind of sequence, the kind of items, the aspects of items
to be accumulated, the kind of accumulation, etc. The mappings between the
abstract level and the implementation level are provided by view types, which
provide several functions:

– View types wrap each concrete type, converting it to the view used for the
application. They also cause derived values (e.g. parts of a data structure) to
be wrapped appropriately by changing the type of the part to the wrapper
view type.

(myinputv (z myinput)
prop ((sequence (z) result myalseq)))

This view type, named myinputv, wraps the concrete input type myinput,
defining the sequence as the input itself and changing its type to myalseq,
whose element type will be wrapped as myalrec. The name z, which in

5 For simplicity, alist defines find in terms of assoc; if it were defined more generally
using a generic version of assoc, type propagation would cause an appropriate com-
parison function to be used for keys, and the resulting code would be translatable
to languages other than Lisp.

6 (a (typeof (first self))...) is best understood inside-out: (first self) is
the first entry record of the alist, (typeof (first self)) is the type of the entry
record, and (a (typeof (first self))...) creates a new record of this type. This
is all evaluated at compile time; the code to extract the first element is discarded
since all that is needed is its type.
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practice is a unique generated name, is used to hide internal structure of the
wrapped type to prevent name conflicts.

– View types include glue code to select features used by the application, e.g.
the aspect of the item that is to be accumulated.

(myalrec (z myinputitem)
prop ((accdata ((price z)))

(key ((name z)))) )

This view type wraps the concrete item type myinputitem and provides glue
code that defines the key for indexing as the name field of the input record
and the data to be accumulated, accdata, as the price field of the input.7

– View types invoke generic procedures by including abstract superclasses. For
example, the adder behavior is invoked by listing adder as a superclass of
the accumulator data structure.

(myview1 (z123 myaldata)
prop ((sum ((data z123))))
supers (adder))

This view type wraps the alist entry myaldata, defining the sum expected
by an adder as the data field of that record and invoking the adder behavior
by listing adder as a superclass.
An application could have multiple adders, e.g. it might be desired to accu-
mulate both cost and weight over a list of items ordered. A separate wrapper
of the data for each adder allows each to have its own sum variable in the
same record.

The most complex view type is myaldata, the element of the alist, whose
data structure combines an indexing field key for alist with arbitrary fields for
the accumulators that are used, in this case the field data for an adder.

(myaldata (list (key symbol) (data integer))
msg ((initialize

((send (view1 self) init)
self))

(update (glambda (self item)
(send (view1 self) update (send item accdata)))))

views ((view1 adder myview1)) )

myaldata not only includes data fields for one or more accumulators, but also
redistributes messages to initialize and update the record: to update myaldata
means to update each of its accumulators. myaldata includes a view specifica-
tion: the code (view1 self) acts as a type change function that changes the
type from myaldata to the view type myview1 that makes the record look like
7 The field names name and price are used to illustrate that the view connects the
names used in the generics to arbitrary features of the application records. Of course,
computations over several fields could be used if appropriate.
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an adder. The update method of myaldata redistributes the update message
to the adder view of itself using the property accdata of the (wrapped) item as
the addend.

The complete set of types for this problem includes two given types (the input
list type and the element type of the list) and seven (handwritten) view types.
Given these, the GLISP compiler specializes and combines five generic compo-
nents (Iterate-Accumulate, Find-Update, list-iterator, alist, and adder) to
produce the function shown in Fig. 2. Except for minor differences that could
be removed by an optimizer, this is the same as the hand-written function.

(LAMBDA (INPUT ACC)

(LET (ITEM ITER)

(SETQ ACC (LIST))

(SETQ ITER INPUT)

(WHILE ITER (SETQ ITEM (POP ITER))

(SETQ ACC

(LET (ENTRY)

(SETQ ENTRY (ASSOC (CAR ITEM) ACC))

(UNLESS ENTRY

(PUSH

(LET ((SELF (LIST (CAR ITEM)

0)))

(SETF (CADR SELF) 0) SELF)

ACC)

(SETQ ENTRY

(ASSOC (CAR ITEM) ACC)))

(INCF (CADR ENTRY) (CADR ITEM))

ACC)))

ACC))

Fig. 2. Result of Specialization

We have identified the abstract components of this application program and
have shown how separate, independent abstract components can be combined
by a compilation process using view types to produce essentially the same pro-
gram as was written by a human programmer. The abstract components are
satisfying in the sense that each represents a single programming concept in
a clear way without any dependence on the particulars of an application. This
method of breaking the program into abstract components satisfies the substitu-
tion test: it is possible to substitute or modify individual components, resulting
in a correspondingly modified generated program.

We argue that real programs are based on the use of multiple views of data,
and indeed, that multiple views of actual objects as different kinds of abstractions
are common in design problems of all kinds. Commonly used methods of type
parameterization fail to support multiple views and therefore inhibit composition
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of abstract components. For example, a class library may allow the user to create
a class “linked-list of t”, where t is an application type, and to obtain standard
linked-list functions for this class. However, it will not be possible in general to
view the resulting linked-list element as a member of a different class and inherit
its methods, much less to say “think of a linked list of cities as representing
a polygon.” With standard class parameterization, the user can obtain some
procedures needed for an application by reuse, but cannot compose abstract
components. Nearly all applications require composition of abstract components:
as we have seen, even our small example program involved five components.

Unfortunately, the relationships of program components are complex.8 The
different type fonts used in the human-coded version of the example show that
the abstract components of the application become thoroughly intertwined when
they are translated into code. The seven view types needed for our example also
are intricately related, though less so than the code itself. If a human must specify
all of the view types manually in order to synthesize a program, it may be almost
as easy to write the code manually. Clearly there is a need for automated tools
to help synthesize the view types.

4 Abstract Interface Specifications

The primary abstraction mechanisms available in conventional programming are:

– Parameterization, as in subroutine calls.
– Substitution, either textual or structural.
– Inheritance of methods, as in OOP.

We have identified other mechanisms that are needed for composing abstract
components:

– Data for a component needs to be anchored somewhere – as a global variable,
local variable, or component of some record. The location of the anchor will
be application-dependent. If it were desired simply to add all the values n
in the input list in our example, an adder using a local variable as its sum
would suffice; to add the values n for each key, the sum was put into the
alist record.

– A record type in general contains fields that are used by different parts of an
application. Therefore, it is necessary for a record to accumulate data from
separate abstract components. Name conflicts must be handled by renaming
fields where necessary.

– When a record type receives fields from an abstract component, in general
it will need a view type to translate the renamed fields for that component
to the names expected by generic methods of the component.

8 We find that composition of program components is difficult for students in a fresh-
man course for CS majors using Scheme. Some students seem to be unable to learn
to do it; they say, “I understand all the parts for this problem, but I just can’t put
them all together.”
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– The record type must accumulate code fragments for the components, e.g.
an update of the record is distributed as an update of each component.

The structure of the view types needed for an abstract procedure such as
Iterate-Accumulate can be represented abstractly as a network showing rela-
tionships among the types. These relationships provide constraints that can be
used to infer some parts of the view types and can be used to guide the system
in helping the user to specify others.

5 Future Programming System

We have assigned graduate students to create program modules using the web-
based Automatic Programming Server (APS) and VIP tools. Despite some (jus-
tified) complaints about the user interface, the students have been able to use
the tools effectively to create program components. These tools satisfy our three
criteria listed earlier:

– Good performance of generated code: Since only good algorithms are offered,
and they are compiled efficiently, the resulting code is efficient. A human
programmer may be tempted to use poor algorithms (e.g. linear search of
a symbol table) because they are easy to understand and to code. If code
generation is essentially free, better but more complex algorithms (e.g. an
AVL tree) can be used.

– Minimal programmer input: Our systems require only minimal text input
and a few mouse clicks on either menus or graphical representations. Program
creation is much faster than typing code: programs up to a few hundred lines
can be created in a minute or two of interaction.

– Minimal learning. The menus and graphical representations used in our sys-
tems are self-documenting and rely on previous learning, e.g. geometric rep-
resentations learned in math or physics classes. There should be no need for
a reference manual (“manuals considered harmful”).

Despite the success of our existing tools, these tools produce software com-
ponents, not whole programs. The programmer must design data structures and
the architecture of the whole system, and some code must be written by hand.
It should be possible to use tools that are similarly easy-to-use to create and
maintain complete programs. In this section, we discuss experimental systems
we have implemented, criteria for useful programming systems, and plans for
future systems.

An important criterion is that reusable components must be abstract. One
method of abstraction [27] [26] is to start from purely mathematical components
such as sets that become specialized into data structures, with operations being
specialized into algorithms; this approach is well-suited to problems that are nat-
urally described in such terms, e.g. combinatoric search problems. Our approach
is to develop an “engineering catalog” of components that can be combined to
create programs. We have demonstrated, using hand-written view types, that a
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single generic Iterate-Accumulate procedure can be specialized into a variety of
different programs, including summing a list of numbers, making a histogram of
SAT scores, numerically integrating a function, counting occurrences of words
in a text file, etc. However, the view types required are complex; it seems unrea-
sonable to require a human to create them.

As in other kinds of engineering, software components constrain each other in
a variety of ways; conventional languages represent only a few of these constraints
(primarily type checking). By representing constraints among components ex-
plicitly, we hope that the system can both ensure the validity of the resulting
code and reduce the amount of specification required from the programmer. Our
use of constraints is quite different from standard constraint satisfaction prob-
lems (CSP) [25]. In classical CSP, the goal is to find a set of variable values that
satisfies a pre-existing set of constraints. SPECWARETM [27] uses colimits of
categories to combine specifications, resulting in combinations that satisfy all
the constraints of the combined components. We envision a system in which the
specification of a program will be constructed incrementally, e.g. by selecting a
program framework such as Iterate-Accumulate, selecting components to plug
in to that framework, such as an adder, and creating interface glue code, e.g.
selecting a field from the input record to be accumulated. In this model of pro-
gram construction, the set of constraints is incomplete until the end. Often, a
constraint violation represents a problem waiting to be solved rather than in-
consistency of previously made choices, e.g. a type mismatch may be solved by
insertion of glue code that produces the needed type.

Our use of constraints is more like that in MOLGEN [28] or Waltz filtering
[30], in which constraints and connections of components are used to propagate
facts through a network representation of the problem. In one system we have
constructed, called boxes, the abstract program Iterate-Accumulate is initially
represented as a network containing an iterator whose output is connected to an
accumulator. The input to Iterate-Accumulate is connected to the input of the
iterator; however, each of these connections can be mediated by some glue code
that extracts the desired data, converts data to the proper type, or performs
some computation. When the user specifies some part of the specification, e.g.
a data type, the specification is treated as an event on a box (a network node).
An event causes rules associated with the class of the box to be examined to see
if their preconditions are satisfied; if so, the rule fires, making conclusions that
cause subsequent events. These rule firings have the effect of making common
default decisions and propagating them through the network; when the defaults
are correct, this reduces the amount the user must specify.

As an example, suppose that the user specifies the Iterate-Accumulate pro-
gram framework, and then declares that its input type is (arrayof integer).
This event causes this type to be matched against the abstract type of the Itera-
tor, (sequence anything); the two types match, so the input is assumed to be
directly connected to the iterator, and the iterator’s input type becomes known
as (arrayof integer). This event triggers a rule in the iterator, allowing it to
infer its item type, integer. This is propagated to the accumulator as its input
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type. Since the most common way of accumulating integers is to add them, a
rule fires that causes the accumulator to specialize itself to an integer accumu-
lator. Now the output type of the accumulator is integer, which becomes the
program result type.

If the user says no more, inference from this minimal specification is enough
to allow a program to be generated:

result type: INTEGER

(LAMBDA (IFA)
(LET (ACC)
(SETQ ACC 0)
(LET (ITEM)

(DOTIMES (INDX (ARRAY-TOTAL-SIZE IFA))
(SETQ ITEM (AREF IFA INDX))
(INCF ACC ITEM)))

ACC))

However, inferences made by the system must be defeasible: it is possible
that the user does not want to sum integers, but instead wants to create a
histogram of the odd integers. Whenever a fact is added to the network by
inference, justifications are added to identify the premises on which the inference
depended. This reason maintenance allows automatic retraction of inferences
made by the system (e.g. when assumptions made by rules are over-ridden by
user specifications), causing inferences that depended on retracted information
to be withdrawn and re-derived based on the new information. In our example,
the user can add a predicate to the iterator (e.g. to select odd integers only),
perform a computation on the item of the iteration (e.g., square the integers)
before input to the accumulator, change the accumulator (e.g. to a histogram),
parameterize the accumulator (e.g. specify the bin width of the histogram), etc.

6 Conclusions

Human-to-human communication is characterized by omission of all informa-
tion that an intelligent listener should be able to infer from what was already
said. In automating programming, minimizing communication of the program
specification is an essential goal: one should have to tell the computer no more
than one would tell a colleague to describe the same problem. We envision a
programming system in which inference is used to minimize what the human
must specify, allowing obvious choices to be made automatically and presenting
intelligent possibilities when choices must be made. Graphical representations
such as the one used by VIP can be easier to understand and manipulate than
text; at the same time, large network representations are unreadable, so careful
design of the interface is necessary.

Real programs are subject to maintenance (usually specification changes). We
envision the network representations as being editable; view types are derived
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from the network, and these types allow code to be compiled by specialization
of generic procedures.

This paper has analyzed a human-written program to reveal that it is com-
posed of several abstract components that became closely interwoven in the code.
We showed that a similar program could be composed from independent abstract
software components using view types. Finally, we described how inference on a
network representation can allow appropriate view types to be constructed from
a minimal specification.

7 Related Work

Krueger [11] is an excellent survey of software reuse, with criteria for practical ef-
fectiveness. Mili [15] extensively surveys reuse, emphasizing technical challenges.
Genesereth [5] and Wiederhold [31] present views of advanced forms of program-
ming.

Lowry [12] discusses reformulation by abstracting from a user’s program spec-
ification to an abstract specification, then using the abstract specification to
generate code.

Kiczales [9] describes Aspect-Oriented Programming, in which program as-
pects that cross-cut the procedural structure of programs (such as performance,
memory management, synchronization, and failure handling) need to be co-
composed with the procedural description. An aspect weaver transforms the
procedural program at join points according to specifications in a separate as-
pect language. Although the aspect weaver is automatic, the programmer must
ensure that it will find the appropriate join points so that the program will be
transformed as desired.

SPECWARETM [27] is a collection of tools, based on category theory, that
performs composition of types by finding the colimit of the descriptions. Sorts
(types) can be described by axioms in logic. The tools provided by SPECWARE
could be useful in implementing the kinds of type manipulations we have de-
scribed.

Biggerstaff [3] has developed an Anticipatory Optimization Generator, in
which tags are used to control the application of program transformations. Tags
are somewhat like interrupts in that they can trigger specific optimizations when
likely opportunities for them arise, allowing powerful transformation of code
without large search spaces.

The clichés and overlays used in the Programmer’s Apprentice [24] [23] are
somewhat analogous to our generics. Batory [2] has described construction of
software systems from layers of plug-compatible components with standardized
interfaces. Goguen [6] proposed a library interconnection language using views
in a way analogous to ours. C++ [29] allows template libraries for commonly
used data structures.

Current work in automatic programming includes SciNapse [1], which gen-
erates programs to simulate spatial differential equations. SIGMA [8] constructs
scientific programs from graphical specifications, somewhat like our VIP system
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[17]. KIDS [26] transforms problem statements in first-order logic into programs
that are highly efficient for certain combinatorial problems; it has a sophisticated
user interface. AMPHION [13] uses proofs in first-order predicate calculus to cor-
rectly combine subroutines for calculations in solar system kinematics based on
a less complex user specification.
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Abstract. Symbolic model checking of various important properties like
reachability, containment and equivalence of constraint automata could
be unsolvable problems in general. This paper identifies several classes of
constraint automata for which these properties can be guaranteed to be
solvable by reformulating them as the evaluation problem of solvable or
approximately solvable classes of constraint logic problems. The paper
also presents rewrite rules to simplify constraint automata and illustrates
the techniques on several example control systems.

1 Introduction

Several types of constraint automata are used in a natural way to model the op-
eration of systems and processes. Some of the early types of constraint automata
include counter machines with increment and decrement by one operators and
comparison operators as guard constraints [20, 21] and Petri nets that are equiv-
alent to vector addition systems [22, 24]. Other types of constraint automata
with more complex guard constraints are applied to the design of control sys-
tems [2, 6, 7, 8, 10, 15]. In this paper we use a particular type of constraint
automata that contains read operators and existentially quantified variables in
guard constraints (see the definition in Section 2.1).

While the ease of modeling by constraint automata is useful for the descrip-
tion of systems, symbolic model checking, i,e, answering several natural questions
about constraint automata, is unsolvable in general [19]. In fact, even counter
machines are theoretically as expressive as Turing machines [20, 21], which means
that reachability, i.e., checking whether the system will ever reach some given
configuration, is undecidable. For Petri nets the reachability problems is decid-
able [16, 18], but some other natural problems like the equivalence between two
Petri nets is undecidable.

The potential of reformulating symbolic model checking problems as decid-
ability problems of various questions about the model of constraint logic pro-
grams [12] or constraint query languages [13, 14] was noticed by many authors.
However, the model of constraint logic programs is not computable in general,
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hence many model checking proposals that use this approach yield possibly non-
terminating procedures.

In contrast, in this paper, we aim at guarantees of termination. We do that
in two steps, first, if possible, then we simplify the constraint automata by some
rewriting rules. Second, we rewrite the simplified constraint automata into solv-
able classes of constraint logic programs, in particular, Datalog programs with
the following classes of constraints: (1) gap-order constraints, (2) gap-order and
positive linear inequality constraints, (3) gap-order and negative linear inequal-
ity constraints. In each of these cases, we can use the constraint logic program
to find (in a constraint database form) the set of reachable configurations of the
original constraint automata, that is, the set of states and state values that a
constraint automaton can enter [27, 25]. This leads to a decidability of both the
reachability and the containment and equivalence problems.

For constraint automata for which such reformulation of the original prob-
lem does not lead to a solution, some form of approximation can be used. For
example, approximation methods for analyzing automata with linear constraints
are presented in [15, 8]. Both of these approximation methods yield an upper
bound on the set of state configurations by relaxing some of the constraints
(in fact, [8] relaxes them to gap-order constraints). However, in many cases of
these approaches the upper bound is quite loose. We present an approximation
method that derives arbitrarily tight upper and lower bounds for those constraint
automata that can be expressed as Datalog with difference constraint programs.

The rest of the paper is organized as follows. Section 2.1 defines and gives
several examples for constraint automata. Section 2.2 defines Datalog programs
with constraints and several main classes of constraints. Section 2.3 reviews
approximate evaluation methods for Datalog with difference constraints. Sec-
tion 3 presents some reduction rules that can be used to rewrite the constraint
automata into equivalent constraint automata. Section 4 presents a method of
analyzing the reachable configurations of constraint automata by expressing the
constraint automata in Datalog with constraints. Section 5 discusses some more
related work. Finally, Section 6 gives some conclusions and directions for further
work.

2 Basic Concepts

2.1 Constraint Automata

A constraint automaton consists of a set of states, a set of state variables, tran-
sitions between states, an initial state and the domain and initial values of the
state variables. Each transition consists of a set of constraints, called the guard
constraints, followed by a set of assignment statements. The guard constraints of
a constraint automaton can contain relations. In constraint automata the guards
are followed by question marks, and the assignment statements are shown using
the symbol :=.

A constraint automaton can move from one state to another state if there is
a transition whose guard constraints are satisfied by the current values of the
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state variables. The transitions of a constraint automaton may contain variables
in addition to the state variables. These variables are said to be existentially
quantified variables. Their meaning is that some values for these variables can
be found such that the guard constraints are satisfied.

A constraint automaton can interact with its environment by sensing the
current value of a variable. This is expressed by a read(x) command on a tran-
sition between states, where x is any variable. This command updates the value
of x to a new value. The read command can appear either before or after the
guard constraints.

Each constraint automaton can be drawn as a graph in which each vertex
represents a state and each directed edge represents a transition.

Drawing a constraint automata can be a good way to design a control system.
The next is a real-life example (from [10]) of a subway train control system.

Example 2.1 A subway train speed regulation system is defined as follows.
Each train detects beacons that are placed along the track, and receives a “sec-
ond” signal from a central clock.

b-s < 9 ?, b++

      L A T  E

    I N I T I A L

O N T I M E
b-s = -1 ?, b++

b-s = -9?, s++

b := s := d := 0

b-s<-1?,  b++

b-s = 1 ?, s++

b-s > 1 ?, s++ d < 9 ?, b++, d++

d =< 9 ?, b++

b-s > 1 ?, s++

b-s =1 ?, s++

b-s > -9 ?, s++

b-s = 9 ?, b++, d := 0
B R A K E

S T O P P E D

Fig. 1. The Subway Train Control System

Let b and s be counter variables for number of beacons and second signals
received. Further, let d be a counter variable that describes how long the train
is applying its brake. The goal of the speed regulation system is to keep | b− s |
small while the train is running. The speed of the train is adjusted as follows:
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When s + 10 ≤ b, then the train notices its early and applies the brake as
long as b > s. Continuously braking causes the train to stop before encountering
10 beacons.

When b+10 ≤ s the train is late, and will be considered late as long as b < s.
As long as any train is late, the central clock will not emit the second signal.

The subway speed regulation system can be drawn as a constraint automaton
shown in Figure 1 where x+ + and x−− are abbreviations for x := x+ 1 and
x := x− 1, respectively, for any variable x.

2.2 Datalog with Constraints

In this section we review some simple cases of constraint logic programs [12]
and constraint query languages [13, 14] that are based on a simplified version
of Prolog called Datalog, which is a common query language within database
systems [1, 23].
Syntax: Each Datalog program with constraints consists of a finite set of rules
of the form

R0(x1, . . . , xk) :— R1(x1,1, . . . , x1,k1), . . . , Rn(xn,1, . . . , xn,kn ).

where each Ri is a relation name or a constraint, and the xs are either variables
or constants. The relation names among R0, . . . , Rn are not necessarily distinct.
The rule above is read “R0 is true if R1 and . . . and Rn are all true”.

If each Ri is a constraint, then we call R0 a constraint fact. In this paper we
will be interested in the following types of constraints:

Order Constraint: Order constraints are constraints of the form uθv where u
and v are variables or constants over a domain, and θ is one of the operators
in {=,≤,≥, <,>}. If the domain is Z orQ we talk of integer order constraints
or rational order constraints, respectively.

Gap-order Constraint: Gap-order constraints are constraints of the form u−
v ≥ c where u, v are variables or constants and c is a non-negative constant
over either the domain Z or Q. Note that each order constraint is also a
(conjunction of) gap-order constraints.

Difference Constraint: Difference constraints are constraints of the form u−
v ≥ c where u, v are variables or constants and c is a constant over either
the domain Z or Q. Note that difference constraints are more general than
gap-order constraints.

Linear Inequality Constraint: This constraint is of the form c1x1 + . . . +
cnxn ≥ b where each ci and b is a constant and each xi is a variable over
some domain. We call b the bound of the linear constraint.

Negative Linear Inequality Constraint: We call linear inequality con-
straints in which each coefficient ci is negative or zero a negative linear
inequality constraints.

Positive Linear Inequality Constraint: We call linear inequality con-
straints in which each coefficient ci is positive or zero we call them posi-
tive linear inequality constraints.
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Example 2.2 The following Datalog program with gap-order constraints de-
fines the Travel(x, y, t) relation, which is true if it is possible to travel from city
x to city y in time t. (Note that one can always travel slower than a maximum
possible speed. For example, if the fastest possible travel within two cities is 60
minutes, then the actual time could be anything ≥ 60 minutes.)

Travel(x, y, t) :— Go(x, 0, y, t).
T ravel(x, y, t) :— Travel(x, z, t1), Go(z, t1, y, t).

Go(“Omaha′′, t1,′′ Lincoln′′, t2) :— t2 − t1 ≥ 60.
Go(“Lincoln′′, t1,′′KansasCity′′, t2) :— t2 − t1 ≥ 150.

Semantics: The proof-based semantics of Datalog programs views the facts as
a set of axioms and the rules of the program as a set of inference rules to prove
that specific tuples are in some relation. We define this more precisely below.

We call an instantiation of a rule, the substitution of each variable in it by
constants from the proper domain. (For example, the domain may be the set of
character strings, the set of integers, or the set of rational numbers.)

Let Π be a program, a1, . . . , ak constants and R a relation name or a con-
straint. We say that R(a1, . . . , ak) has a proof using Π , written as �Π R(a1, . . . ,
ak), if and only if for some rule or fact in Π there is a rule instantiation

R(a1, . . . , ak) :— R1(a1,1, . . . , a1,k1), . . . , Rn(an,1, . . . , an,kn).

where Ri(ai,1, . . . , ai,ki) is true if Ri is a constraint or �Π Ri(ai,1, . . . , ai,ki) for
each 1 ≤ i ≤ n.

The proof-based semantics of each Datalog program Π with constraints is a
set of relation-name and relation pairs, namely for each relation name R the
relation {(a1, . . . , ak) : �Π R(a1, . . . , ak)}.

Example 2.3 Let us prove using the query in Example 2.2 that one can travel
from Omaha to Kansas City in 180 minutes. We only show the derived tuples
without mentioning the instantiations used.

�Π Go(“Omaha′′, 0,′′Lincoln′′, 60) using the first fact.
�Π Go(“Lincoln′′, 60,′′KansasCity′′, 210) using the second fact.
�Π Travel(“Omaha′′,′′ Lincoln′′, 60) applying the first rule.
�Π Travel(“Omaha′′,′′KansasCity′′, 210) applying the second rule.

Closed-Form Evaluation: If the semantics of Datalog programs with X-type
of constraints can be always evaluated and described in a form such that each
relation is a finite set of facts with the same X-type of constraints, then we say
that the class of Datalog programs with X-type of constraints has a closed-form
evaluation.

Theorem 2.1 The least fixed point model of the following types of constraint
logic programs can be always evaluated in closed-form in finite time:
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(1) Datalog with gap-order constraint programs [27].
(2) Datalog with gap-order and positive linear constraint programs [25].
(3) Datalog with gap-order and negative linear constraint programs [25]. �	

In this paper we omit the details about how the evaluation can be done and
only give a simple example of a closed-form.

Example 2.4 Since the program in Example 2.2 is a Datalog program with
gap-order constraints, by Theorem 2.1 it has a closed-form evaluation. Indeed,
one can give as a description of the semantics of the Travel relation the following:

Travel(“Omaha′′,′′ Lincoln′′, t) :— t ≥ 60.
T ravel(“Lincoln′′,′′KansasCity′′, t) :— t ≥ 150.
T ravel(“Omaha′′,′′KansasCity′′, t) :— t ≥ 210.

2.3 Approximate Evaluation

The approximation of Datalog programs with difference constraints is studied
in [26]. The following is a summary of the main results from [26].

Let us consider a constraint fact with a difference constraint of the form
x − y ≥ c. It may be that the value of c is so small that we may not care too
much about it. This leads to the idea of placing a limit l on the allowed smallest
bound. To avoid smaller bounds than l, we may do two different modifications.
Modification 1: Change in each constraint fact the value of any bound c to be
max(c, l).
Modification 2: Delete from each constraint fact any constraint with a bound
that is less than l.

No matter what evaluation strategy one chooses to derive constraint facts and
add it to the database, one can always apply either of the above two modifications
to any derived fact. In this way, we obtain modified rule evaluations.

Let sem(Π) denote the proof-theoretic semantics of Datalog with difference
constraints program Π . Given a fixed constant l, let sem(Π)l and sem(Π)l

denote the output of the first and the second modified evaluation algorithms,
respectively. We can show the following.

Theorem 2.2 For any Datalog with difference constraint program Π , input
database D and constant l, the following is true:

sem(Π)l ⊆ sem(Π) ⊆ sem(Π)l

Further, sem(Π)l and sem(Π)l can be evaluated in finite time. �	
We can also get better and better approximations using smaller and smaller

values as bounds. In particular,

Theorem 2.3 For any Datalog with difference constraints program Π , input
database D and constants l1 and l2 such that l1 ≤ l2, the following hold.

sem(Π)l2 ⊆ sem(Π)l1 and sem(Π)l1 ⊆ sem(Π)l2 �	
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Example 2.5 Suppose that we want to find a lower approximation of the output
of Travel using l = 100, that is, when in the input program and after the deriva-
tion of any new constraint fact we change each bound c to be the maximum of
100 and c. The evaluation technique in [26] would yield in this case the following.

Travel(“Omaha′′,′′ Lincoln′′, t) :— t ≥ 100.
T ravel(“Lincoln′′,′′KansasCity′′, t) :— t ≥ 150.
T ravel(“Omaha′′,′′KansasCity′′, t) :— t ≥ 250.

Note that the output will be a lower approximation of the semantics of Travel
because each possible solution of the returned constraint facts is in the semantics
of the original program. It is also easy to see that the lower approximation will
not contain for example Travel(“Omaha′′,′′KansasCity′′, 210), which as we
saw in Example 2.3 is in the semantics of the original program.

3 Reformulation and Simplifications of Constraint
Automata

For the constraint automaton in Figure 1 a correct design would require that
b − s is at least some constant c1 and at most some constant c2. The value of
b− s may be unbounded in case of an incorrect design. Testing whether b− s is
within [c1, c2] or is unbounded is an example of a model checking problem. For
this problem both [10, 8] give approximate solutions, which may not be correct
for some values of c1 and c2. We will give a solution that finds all possible values
of b− s precisely.

Variable change: The constraint automaton in Figure 1 is more complex than
necessary because we are only concerned with the difference of the two variables
b and s instead of the exact values of these two. Therefore, the constraint au-
tomaton can be simplified for the purpose of our model checking problem. Let’s
rewrite Figure 1 by using variable x instead of the value (b−s)−20 and y instead
of d. This change of variables yields the automaton shown in Figure 2.

Now we can make some observations of equivalences between automata. We
call these equivalences reduction rules. Reduction rules allow us to either rewrite
complex constraints into simpler ones (like rules one and two below) or eliminate
some transitions from the constraint automaton (like rule three below).

Moving increment after self-loop: This reduction rule is shown in Figure 3.
This rule can be applied when no other arcs are ending at state S. This rule
says that if there is only one self-loop at S and it can decrement repeatedly a
variable while it is greater than c, then the x+ + before it can be brought after
it, if we replace c by c−1 in the guard condition of the self-loop. It is easy to see
that this is a valid transformation for any initial value of x. We give an example
later of the use of this reduction rule.

Elimination of increment/decrement from self-loops: This reduction rule
is shown in Figure 4. There are two variations of this rule shown on the top and
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      L A T  E

    I N I T I A L S T O P P E D

O N T I M E  B R A K E

x > -19 ?, x--

x<-21?,  x++

x = -29?, x--

x = -21 ?, x++

x =-19 ?, x--

x = -19 ?, x--

x < -11 ?, x++ x > -29 ?, x--
x > -19 ?, x--

x = -11 ?, x++, y := 0

y < 9 ?, x++, y++

y <= 9 ?,  x++

x := -20,  y := 0

Fig. 2. The Subway System after Changing Variables

S

x > c ?
x --

x++
S

x --
x > (c-1) ?

x++

Fig. 3. Rule 1: Moving Increment after Self-Loop

the bottom, depending on whether the variable is incremented or decremented.
The top variation says that if a variable is decremented one or more times us-
ing a self-loop until a guard condition x > c is satisfied, then the repetition is
equivalent to a self-loop which just picks some value x′ greater than equal to c
and less than the initial value of x and assigns x′ to x. The bottom variation is
explained similarly. Note that both reduction rules eliminate the need to repeat-
edly execute the transition. That is, any repetition of the transitions on the left
hand side is equivalent to a single execution of the transition on the right hand
side.
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S S

∃
x := x’

x < c ?
x ++

S

x > c ?
x --

S

∃ x’  c <= x’ < x ?
x := x’

x’  x < x’ <= c ?

Fig. 4. Rule 2: Elimination of Increment/Decrement from Self-Loops

Elimination of increment/decrement from a pair of self-loops: This
reduction rule is shown in Figure 5. This rule can be applied when c1 < a and
b < c2 and no other arcs end at S. Clearly the repetitions of the double increment
loop alone, will keep y − x = (b − a) because both y and x are incremented by
the same amount. The incrementing applies between c2 ≥ y ≥ b. However, the
double increment loop may be interleaved with one or more single decrement
rule that can decrease x down to c1. The net effect will be that the condition
x′ ≥ c1, c2 ≥ y′ ≥ b, y′− x′ ≥ (b− a) must be true after any sequence of the two
self-loop transitions.

x := a,  y := bx := a,  y := b

∃ x’, y’

SS

2y < c ?
x ++
y ++

x > c ?
x --

1

x’ >= c

x := x’
y := y’

1

2c  >= y’ >= b
y’ - x’ >=  (b - a) ?

Fig. 5. Rule 3: Elimination of Increment/Decrement from Pairs of Self-Loops
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Now let’s see how the above reduction rules can be applied to the constraint
automaton in Figure 2. Applying the first rule brings x + + after the self-loop
over state Stopped. Then it is trivial to note that “increment x, test whether it is
−19 and if yes decrement x” is the same as “test whether x = −20”. Hence we
can further simplify the constraint automaton as shown in the top of Figure 6.

Now after applying the second rule with the self-loops over the states Late,
Ontime and Stopped and the third rule over the state Brake we obtain the con-
straint automaton shown in the bottom of Figure 6.

4 Analysis of Reachable Configurations

Each combination of a state name with values for the state variables is a con-
figuration. Often, it is important to know what is the set of configurations that
a constraint automaton may move to. This set is called the set of reachable
configurations.

The set of reachable configurations can be found by translating the constraint
automaton into a Datalog program. The Datalog program will use a separate
relation for representing each state. Each relation will have the set of state
variables as its attributes. Each transition of the constraint automaton will be
translated to a Datalog rule. We give a few examples of translations.

Analysis of Example 1: We saw in Section 3 that the constraint automaton
of Example 1 can be simplified to the one shown in Figure 6. The set of reachable
configurations of the constraint automaton shown in Figure 6 can be expressed
in Datalog as follows.

Brake(−10, 0) :— Ontime(−11, y).
Brake(x′, y′) :— Brake(x, y), x′ ≥ −19, 9 ≥ y′ ≥ 0, y′ − x′ ≥ 10.

Initial(−20, 0).

Late(−30, y) :— Ontime(−29, y).
Late(x′, y) :— Late(x, y), x ≤ x′ ≤ −21.

Ontime(x, y) :— Initial(x, y).
Ontime(−20, y) :— Late(−21, y).
Ontime(−20, y) :— Brake(−19, y).
Ontime(−20, y) :— Stopped(−20, y).
Ontime(x′, y) :— Ontime(x, y), x ≤ x′ < −11.
Ontime(x′, y) :— Ontime(x, y), −29 ≤ x′ < x.

Stopped(x′, y) :— Stopped(x, y), −20 ≤ x′ < x.
Stopped(x, y) :— Brake(x, y), y ≤ 9.
This Datalog program contains only gap-order constraints. Therefore by The-

orem 2.1 its least fixpoint model can be found in finite time. In fact, we evaluated
this Datalog program using the DISCO constraint database system [3], which
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      L A T  E

    I N I T I A L S T O P P E D

O N T I M E  B R A K E

x<-21?  x++

x := -20 ,  y := 0

x > -20? x--

y <= 9 ?

x = -21 ?  x++

x = -29?  x--

x < -11 ?  x++ x > -29 ?  x--

x = -11 ?  x++, y := 0

x = -19 ?  x--

x =-20? 

x > -19 ?  x-- y < 9 ?  x++, y++

∃x’   -20 <= x’ < x ?  x :=  x’

∃
x := x’

x’   x <= x’ < -11 ?

      L A T  E

    I N I T I A L S T O P P E D

O N T I M E  B R A K E

x := -20 ,  y := 0

y <= 9 ?

x = -21 ?  x++

x = -29?  x--

x = -11 ?  x++, y := 0

x = -19 ?  x--

x =-20? 

∃x’   x <= x’ < -21 ?  x :=  x’

∃
x := x’

x’   -29 <= x’ < x ? ∃x’, y’

x’ >= -19

y’ - x’ >= 10 ?

9 >= y’ >= 0

x := x’
y := y’

Fig. 6. The Subway System after Rules 1 (above) 1-3 (below)
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includes an implementation of integer gap-order constraints, and found that in
each tuple x is within −30 and 0. Therefore, s− d is always within −10 and 20.

4.1 The Cafeteria Constraint Automaton

The following is an example of a constraint automaton in which the guards
contain relations and negative linear inequality constraints.

Example 4.1 A cafeteria has three queues where choices for salad, main dishes,
and drinks can be made. A customer has a coupon for $10. He first picks a
selection. His selection must include a main dish and a salad, but drink may be
skipped if the salad costs more than $3. If the total cost of the selection is less
than $8 then he may go back to make a new choice for salad or drink.

x+y+z < 8?

    

z := z’
x+y+z’ <= 10?

y := y’

x’ >= x

x := x’
x’+y+z <= 10? x+y’+z <= 10?

z’ >= z

∃ ∃

∃

y = 0
salad(s, x’)

s, x’ m, y’
main(m, y’)

d, z’
drink(d, z’)

x+y+z < 8?

DRINK
QUEUE

x > 3?y > 0?

SALAD MAIN

QUEUE

PAY

QUEUE

QUEUE

Fig. 7. The Cafeteria Constraint Automaton

Let salad, main and drink be three binary relations in which the first argu-
ment is the name of a salad, main dish, or drink, and the second argument is its
price. The constraint automaton in Figure 7 expresses this problem.

Analysis of Example 4.1: Assume that in Example 4.1 each main dish
costs between five and nine dollars, and each salad and drink costs between two
and four dollars. The set of reachable configurations of the constraint automaton
shown in Figure 7 can be expressed in Datalog as follows.
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Drink Queue(x, y′, z) :— Main Queue(x, y, z), 5 ≤ y′ ≤ 9,
y = 0, −x− y′ − z ≥ −10.

Drink Queue(x, y, z) :— Pay Queue(x, y, z), −x− y − z ≥ −7.

Main Queue(x′, y, z) :— Salad Queue(x, y, z), 2 ≤ x′ ≤ 4,
x′ ≥ x, −x′ − y − z ≥ −10.

Pay Queue(x, y, z′) :— Drink Queue(x, y, z), 2 ≤ z′ ≤ 4,
z′ ≥ z, −x− y − z′ ≥ −10.

Pay Queue(x, y, z) :— Drink Queue(x, y, z), x > 3.

Pay Queue(x, y, z) :— Main Queue(x, y, z), y > 0.

Salad Queue(x, y, z) :— Pay Queue(x, y, z), −x− y − z ≥ −7.
Salad Queue(0, 0, 0).
This Datalog program contains only gap-order and negative linear inequality

constraints. Therefore by Theorem 2.1 its least fixpoint model can be found in
finite time. We ran this also in the DISCO constraint database system, which
returned the least fixpoint model represented as 20 different constraint facts.

4.2 The Account Balances Constraint Automaton

Let’s look at a case of a constraint automaton that can be expressed as a Datalog
program whose least fixpoint can be evaluated approximately.

Example 4.2 Three accounts have initially the same balance amounts. Only
deposits are made to the first account and only withdrawals are made to the
second account, while neither withdrawal nor deposit is made to the third ac-
count. Transactions always come in pairs, namely, each time a deposit is made to
the first account, a withdrawal is made from the second account. Each deposit
is at most $200, and each withdrawal is at least $300. What are the possible
values of the three accounts?

Let x, y, z denote the amounts on the three accounts, respectively. The con-
straint automaton in this case is shown in Figure 8.

Here the transition rule says that if at some time the current values of the
three accounts are x, y and z, then after a sequence of transactions the new
account balances are x′, which greater than or equal to x but is less than or
equal to x + 200 because at most $200 is deposited, y′, which is less than or
equal to y − 300 because at least $300 is withdrawn, and z which does not
change. The initialization which sets the initial balances on the three accounts
to be the same is not shown.

Analysis of Example 4.2: The set of reachable configurations of the con-
straint automaton shown in Figure 8 can be expressed in Datalog with differ-
ence constraints as follows. (In the Datalog program we rewrote some of the
constraints to make clear that they are difference constraints.)
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y := y’

x’ <=  x + 200
y’ <=  y - 300  ?

x’ >= x

x := x’

BALANCES

∃ x’

Fig. 8. The Account Balances Constraint Automaton

Balance(x, y, z) :— x = y, y = z.
Balance(x′, y′, z) :— Balance(x, y, z), x′ − x ≥ 0,

x− x′ ≥ −200, y − y′ ≥ 300.
This Datalog program contains only difference constraints. Therefore by The-

orem 2.2 its least fixpoint model can be found in finite time approximately. Before
discussing the approximation, let’s note that in this case the least fixpoint of the
Datalog program can be expressed as the relation

{(x, y, z) : ∃k x ≥ z, z − x ≥ −200k, z − y ≥ 300k}

This relation is not expressible as a finite set of gap-order constraint facts.
However, we can express for each fixed l < −200 the relation

{(x, y, z) : ∃k x ≥ z, z − x ≥ max(l,−200k), z − y ≥ 300k}

as a finite set of gap-order constraint facts. This would be a lower bound of
the semantics of the Balance relation. We can also express the relation

{(x, y, z) : ∃k
{
x ≥ z, z − x ≥ −200k, z − y ≥ 300k if -200k ≥ l
x ≥ z, z − y ≥ 300k otherwise

}
}

as a finite set of gap-order constraint facts. This would be an upper bound
of the semantics of the Balance relation.

The approximation could be used for example to decide some reachability
problems. For example, consider the question: Is it possible that the account
balances are at any time x = 1500, y = 200 and z = 1000? When we use an
approximate evaluation with l = −1000, we see that is it not in the upper
bound of the semantics of the Balance relation. Hence it cannot be possible.

5 Related Work

Most of the model checkers operate only on bounded models, not unbounded
ones like we did in this paper. For example, the representation of binary decision
diagrams or BDDs [19] captures a finite set of states of boolean variables and
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cannot be used to represent the set of states of our constraint automata. The
HyTech system developed by Henzinger et al. [11] is a model checker for hybrid
automata that model both discrete and continuous change and represent infinite
states. Although this system has been useful for some applications, the system
cannot be proven to always yield an answer, that is, it may not terminate unlike
our system.

An interesting problem that occurs in debugging is to automate the genera-
tion of abstract models from software programs. Lowry and Subramaniam [17]
extend program slicing techniques to abstract state-based programs for the pur-
pose of model checking. Program slicing is a software engineering technique that
extracts a partial program equivalent to an original program over a subset of
the program variables [5]. Program slicing algorithms work backwards from the
program end-point by keeping all statements that effect in any way the desig-
nated variables and removing all other statements. Lowry and Subramanian [17]
propose semantic slicing which is done with respect to state predicates instead
of state variables. That is, programs are sliced with respect to state predicates
starting from a statement that contains the operations which are required to
only be executed in particular states. [17] and [9] also propose performing data
abstractions using weakest preconditions to compute an abstract model. The
property of the abstract model is that whenever an invariant property is true in
the abstract model then it is true in the concrete model, but not vice versa. In
other words, the abstract model could lead to false negatives except in special
cases when the property is expressible in restricted temporal logics like CTL.
Therefore in general an abstract model counterexample to the property verified
has to be still checked on the concrete model. Note that all our reformulations of
constraint automata preserve all properties being verified, because we are inter-
ested in the computing in a finite representation the exact set models for each
state.

Another interesting use of model checking occurs in planning. Cimatti at
al. [4] observe that a planning search problem can be articulated as the problem
of achieving a goal state starting from some initial state through a sequence of
operator applications, where each operator is applicable on certain preconditions
and specifies a change in the environment (variables), and this search can be
easily expressed as a model checking problem. However, the difficulty is again lies
in the abstractions that many model checkers use. The abstract plan generated
using model checking may not be refinable to a correct ground solution, i.e.,
executable by a concrete sequence of operator applications.

6 Conclusion and Further Work

As our examples illustrate, constraint automata can be often expressed in Data-
log programs that contain only specific types of constraints (gap-order, positive
or negative linear inequality, difference). These Datalog programs that define
the set of reachable configurations of the constraint automata, can be always
evaluate or approximately evaluated with any desired precision. That leads to
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solutions to model checking problems like reachability, containment and equiv-
alence. One can also test any of a number of more complex conditions on the
model as we have done for the subway train control system.

It remains as an interesting further work to find other classes of constraints
for which at least an approximate closed-form evaluation can be guaranteed.
We have given rewrite rules for the case of gap-order and increment/decrement
constraints. It is also an interesting task to find rewrite rules in the case of other
types of constraints.

It is also an important challenge to see whether constraint automata could
be applied to some of the software debugging problems [9, 17], especially for
concurrent software algorithms, and for other applications like planning [4].
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Abstract. While the decision tree is an effective representation that
has been used in many domains, a tree can often encode a concept in-
efficiently. This happens when the tree has to represent a subconcept
multiple times in different parts of the tree. In this paper we intro-
duce a new representation based on trees, the linked decision forest ,
that does not need to repeat internal structure. We also introduce the
Lumberjack algorithm for growing these forests in a supervised learn-
ing setting. Lumberjack induces new subconcepts from repeated internal
structure. This allows Lumberjack to represent many concepts more ef-
ficiently than a normal tree structure. We then show empirically that
Lumberjack improves generalization accuracy on these hierarchically de-
composable concepts.

1 Introduction

Trees have been used for the representation of induced concepts in numerous ar-
eas of AI, including supervised learning with decision trees (Breiman et al. 1984;
Quinlan 1992) and reinforcement learning (RL) with tree based representations
(Chapman and Kaelbling 1991; McCallum 1995; Uther and Veloso 1998). Trees
are a powerful representation. However, to represent some concepts they may
need to represent some subconcepts multiple times. For example, to represent
the boolean concept AB ∨ CD a decision tree has to repeat the representation
of either AB or CD (see Fig. 1a where CD is repeated).

This repetition of entire subtrees is well known and has been studied by
several researchers (see Section 2). In addition, we have found many RL domains
in which the tree repeats internal structure. These repeated structures can be
viewed as subtasks in the domain. For example, consider a concept mapping
boolean inputs, {A, B, C, D}, to action outputs, {North,South,East,West} as
shown in Fig. 1b. The internal structure of the CD subtree is repeated even
though the leaves are not. It chooses between either North and East, or South
and West depending upon the value of A.

In most inductive systems work must be performed to learn each part of the
tree. If a subconcept is represented twice then it must be learnt twice. Moreover,
each individual representation of a subconcept will be learnt using only part of
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A B True
C D True

False
False

C D True
False

False

A B North
C D North

East
East

C D South
West

West
a) A tree representing the boolean b) A concept with repeated

concept AB ∨ CD internal structure

Fig. 1. Trees with repeated structure

the available data. For example, in Fig. 1a the representation of CD when A is
true is learned separately from the representation of CD when A is false.

One way to avoid this re-learning is to reformulate the result. The target
concept can be described as a hierarchy of concepts, each of which can use
concepts below it in the hierarchy as building blocks. In the example above, the
concept CD could be learned once and then simply referenced in multiple places
while learning the full concept AB ∨ CD.

In this paper we present a new representation, the linked decision forest1.
This representation allows trees in the forest to reference other trees in the forest
as subconcepts. The linked decision forest does not have to repeatedly represent,
and so repeatedly relearn, subconcepts.

We also introduce an algorithm, Lumberjack, for growing these linked forests.
In this algorithm new trees are introduced and old trees removed as the algorithm
progresses. Additionally, all trees in the forest are grown in parallel. This allows
the representation used by the trees, which includes the other trees, to change
dynamically. We show empirically that Lumberjack generalizes more effectively
than a simple decision tree on hierarchically decomposable concepts.

In essence this algorithm can be seen as following a Minimum Description
Length (MDL) (Rissanen 1983), or Minimum Message Length (Wallace and
Boulton 1968), paradigm. In this paradigm, a theory is encoded and then the
data is encoded using the theory. The theory that gives the shortest combined
code length is chosen. The theory is used to compress the data. In Lumberjack
the theory is itself compressed by extracting redundant subtrees and only rep-
resenting them once. This extracted structure is itself represented as a tree and
so the extraction algorithm can be run recursively. The result is a hierarchy of
concepts that are used to represent the data.

1 The term ‘decision forest’ has been used previously in the machine learning literature
to refer to a collection of different decision trees, each separately representing the
same concept (Murphy and Pazzani 1994). We introduce the term ‘linked decision
forest’ to refer to a collection of decision trees with references between the trees so
the forest as a whole, not just the individual trees, represents a concept.
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2 Related Work

Duplicated subtrees, as in Fig. 1a, are a well known problem. Two decision
tree-like systems that attempt to factor out repeated substructure are Pagallo
and Haussler’s (1990) FRINGE system and Oliver and Wallace’s (1992) decision
graph induction system. Kohavi’s (1995) read once oblivious decision graphs are
also related, though less closely as they use a significantly different method to
generate the graph.

The FRINGE system works by first growing a normal decision tree. Once this
tree is fully grown, the last two decisions above each leaf in the tree (the fringe of
the tree) are processed to form new attributes. The original tree is discarded and
a new tree is grown using both the original attributes and the new attributes.
The whole process is repeated, with the number of attributes constantly growing,
until accuracy on a separate dataset starts dropping. The fact that attributes
are not removed if they turn out not to be useful is an efficiency concern, as is
the repeated re-growing of the tree.

In Oliver and Wallace’s (1992) system, decision graphs are inferred directly
using the Minimum Message Length Principle (MML) (Wallace and Boulton
1968; Quinlan and Rivest 1989; Wallace and Patrick 1993). The system proceeds
much as would a decision tree learner, except for two changes. Instead of a depth
first approach to recursively splitting the dataset, the splits are introduced in a
best first manner; the location of the next decision node is chosen using MML.
Also, instead of introducing a new decision node, the system can join two leaves
together.

Kohavi’s (1995) HOODG system is very closely related to Ordered Binary
Decision Diagrams (Bryant 1992). These have a number of differences from ar-
bitrary decision graphs. They both require an ordering among the variables and
will only generate a graph that tests the variables in that order. As discussed by
Kohavi, this limits the representation so that it is less efficient than an arbitrary
decision graph. However, it allows a canonical representation to be found that is
often compact. Most importantly as far as the authors are concerned, the algo-
rithm is not incremental and so cannot be transferred to RL using the techniques
of (Chapman and Kaelbling 1991; McCallum 1995; Uther and Veloso 1998).

Both Oliver and Wallace (1992) and Kohavi (1995) use a decision graph rep-
resentation. A decision graph is not capable of factoring out structure which is
only repeated internally, like the CD subtree in Fig. 1b. Additionally, Oliver and
Wallace’s (1992) decision graph algorithm chooses when to factor out repeated
structure (join two leaves) using MML. The algorithm is choosing subtrees to
‘join’ based on comparison of their outputs, without any comparison of the struc-
tures required to represent the correct subconcepts (which haven’t been grown
at the time the decision to join is made).

In addition to the related work on decision graphs, our work is based on
Nevill-Manning’s (1996) work on the automatic decomposition of strings. Given
a linear sequence of symbols with no prior structure, his Sequitur algorithm
forms a simple grammar where repeated substrings are factored out. For ex-
ample, given the string S → abcdababcd, Sequitur produces the grammar:



222 William T.B. Uther and Manuela M. Veloso

T0: Root
A B True

[A T2] <ID1>: True
<ID2>: G True

False
<ID3>: False

[V T1]

T1
C False

D True
False

T2
E F <ID1>

<ID2>
<ID3>

Fig. 2. A linked decision forest showing the root tree T0, and the trees T1 and
T2; T0 includes a value reference to T1, [V T1], and an attribute reference to
T2, [A T2]

A→ ab, B → Acd, S → BAB. This grammar re-represents the original string in
a compact form.

It is important to note that finding the most compressive decomposition of
this type for a linear string is an NP-hard problem (Storer 1982). The problem
in strings is reducible to the similar problem in trees2, so decomposing trees
for optimal compression is also NP-hard. Sequitur is a linear time heuristic
algorithm for decomposing strings that has been shown to give good results.

3 The Linked Forest Representation

For linear strings the grammar is a well known representation for a hierarchi-
cal decomposition. We introduce the linked forest representation which allows
hierarchical decomposition of trees. A linked forest is composed of trees with
references between them in the same way a grammar is composed of rewrite
rules with references between them. One tree in the linked forest is marked as
the root tree. The root node of this tree is the starting point for classification
by the forest. Figure 2 shows an example of a boolean linked decision forest.

The inter-tree references take two forms. When a node makes a value reference
to another tree the semantics are similar to a jump instruction; processing simply
continues in the new tree. When a node makes an attribute reference to another
tree the semantics are similar to a function call. The referencing node has chil-
dren which are in one-to-one correspondence with the leaves of the referenced
tree. Control is passed across to the referenced tree until a leaf is reached, then
passed back to the corresponding child of the referencing node.

If a tree is only referenced by attribute references, an attribute tree, then it
does not require class labels or other data in its leaves. It simply has ID values
that allow the corresponding children to be found. Lumberjack does not yet
form value trees. They are mentioned for comparison purposes. One can view
FRINGE as forming attribute trees, like Lumberjack, and the Decision Graph
induction algorithm as forming value trees.
2 A string can be embedded in a degenerate binary tree that only has non-leaf children

on one side.
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4 The Lumberjack Algorithm

Nevill-Manning’s (1996) Sequitur algorithm detects common subsequences in
strings by tracking digrams. For our algorithm we define a structure similar to
a digram for trees, a di-node, that can be hashed for fast duplicate detection.

A di-node is defined as a pair of internal nodes in the forest such that one
node is a child of the other. Two di-nodes are defined to be equal if the parent
nodes are equal, the child nodes are equal, and the child is in the same location
in both di-nodes (i.e. child ordering is important). For example, in Fig. 1a the
two nodes labelled A and B form a di-node. The two nodes labelled A and B
in Fig. 2 also form a di-node. These di-nodes are equal; the difference in nearby
nodes is irrelevant. There are also two di-nodes made up of nodes labelled C and
D in Fig. 1a. Those di-nodes are equal, but they are not equal to the di-node
made up of nodes labelled C and D in Fig. 2; the D node is not in the same
location relative to its parent.

Note that either, or both, of the nodes in a di-node could be a reference to
another tree, and so a di-node can represent an arbitrarily large set of nodes.
Also note that two di-nodes will be equal if and only if they represent equivalent
sets of nodes that have been decomposed in the same way. In addition, note that
matching di-nodes do not have to occur in the root tree, or even the same tree.

We are now in a position to give an overview of the Lumberjack algorithm.
Table 1 shows the algorithm in detail. Initially the forest starts as a single tree
with a single leaf node. Leaves are then split and a new decision node added, one
at a time. As the forest is updated a hash table records all di-nodes currently in
the forest. We use the Minimum Description Length (MDL) principle to choose
the next decision node and to decide when to stop growing the forest (the details
of the MDL selection are discussed later). Once an internal node has been added
the forest is checked for duplicate di-nodes using the di-node hash. Any non-
overlapping duplicates are extracted to form a new attribute tree and the original
di-nodes are replaced with references to the new tree. Any trivial attribute trees
(trees referenced only once or having less than two internal nodes) are removed
and their structure reinserted into the referencing tree(s).

This extraction and reinsertion of di-nodes removes all duplicated substruc-
ture from the forest. Because duplicate di-nodes are detected in all trees, it is
common for the structure to be more than two levels deep.

Note that we only ever form attribute trees from internal nodes. In Sequitur
it is possible to form a rewrite rule containing the last character of a string
because the end of the string is unique. If we merge leaves in Lumberjack then
we lose the ability to differentiate the positions where we might wish to add
further nodes. While this might sometimes be useful for linked decision forests,
as shown by Oliver and Wallace (1992), it is difficult to find a suitable criterion
for doing this while retaining the ability to form attribute references.
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– Begin with a single leaf, empty di-node hash and empty tree DAG
– Record this forest as the best forest so far
– Repeat until no further splits are possible
• Set best description length this iteration to ∞
• For each leaf in the root tree or other trees:
∗ Check if splitting this leaf would mean splitting a non-leaf elsewhere
∗ If so, continue with next leaf
∗ For each possible split criterion

· If this split causes a cycle in the tree DAG then continue with
next split
· Introduce new decision node with this split
· Update forest structure (see part b)
· Calculate description length
· If length is less than the best length this iteration, remember this

split
· Remove new decision node from forest
· Update forest structure (see part b)

• Reintroduce node with best split
• Update forest structure (see part b)
• Add new di-node to hash
• While there are duplicate di-nodes, single use trees or degenerate trees
∗ Use non-overlapping duplicate di-nodes to form a new attribute tree

and replace original di-nodes
∗ Reinsert any trees used only once
∗ Reinsert any degenerate trees (less than two internal nodes)
∗ (all while maintaining the di-node hash and tree DAG)

• If forest has a shorter code length than current best forest, remember it
– Return best forest

a) The main linked forest learning algorithm

– For each tree in reverse topological order of the tree DAG
• For each node in a post-order traversal of the tree
∗ If this node is not a reference to an attribute tree then continue to

next node
∗ Delete each child which corresponds to a leaf no longer in the refer-

enced tree
∗ Insert a new child (leaf) for each new leaf in the referenced tree

b) The subroutine to update forest structure

Table 1. The Lumberjack algorithm
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4.1 Altering the Inductive Bias

In the previous text we didn’t supply all the details of the algorithm. If the deci-
sion criteria for new nodes are chosen from only the original attributes, and only
leaves of the root tree are extended, then the concept learned will be the same
as that learned by a normal tree induction algorithm; there will be no change
in inductive bias. The representation will have all repeated structure separated
into other trees, but this is only a change in representation, not concept. We can
change the inductive bias of the algorithm, and hence the concept learned, by
extending the ways the forest is grown.

The first change is to allow the induction algorithm to split not only on the
original attributes, but also to introduce an attribute reference to any tree in
the forest. This can be viewed as a form of macro replay. The one restriction is
that the use of this tree not introduce a cycle in the forest. Lumberjack records
which trees reference which other trees in a directed acyclic graph (DAG). No
split that would introduce a cycle in this graph is allowed.

The second change is to allow the algorithm to refine the attribute trees: we
allow the induction algorithm to grow the forest not only at leaves of the root
tree, but at the leaves of any tree in the forest. This can be viewed as a form
of macro refinement. Again there is a restriction. Recall that leaves of attribute
trees correspond with the children of the nodes that reference them. If you split
a leaf of an attribute tree, then you must split the corresponding children of the
referencing node(s). If any of the corresponding children is not a leaf then we do
not allow the split.

Growing attribute trees changes the number of outcomes of decision nodes
elsewhere in the forest. That in turn changes the number of outcomes of other
decision nodes, etc. Because the trees form a DAG, it is possible to update the
trees in reverse topological order and know that all trees being referenced by the
tree currently being updated are themselves up to date.

Finally, the correspondence between the leaves of an attribute tree and the
children of a node that references that tree is important for the hashing of di-
nodes. The hash table should use that correspondence rather than child number-
ing for generating hash codes and testing equality. By avoiding the use of child
numbering the algorithm does not have to re-hash di-nodes when an attribute
tree grows or shrinks.

4.2 Example: Growing ABC ∨ DEF

Figures 3 and 4 show two series of decision forests that might be generated while
growing the boolean function ABC∨DEF . The algorithm is deterministic and so
to generate two different forests would require different sets of training data, even
if sampled from the same original concept. Rather than use real data and MDL
we have chosen the decision nodes added at each stage ourselves to demonstrate
aspects of the algorithm. To save space a number of steps are omitted.

Figure 3 demonstrates the common substructure detection of Lumberjack.
In part a) the forest is a single tree with no repeated structure. In part b) we
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show an intermediate stage with a repeated di-node, DE. This is then extracted
in part c) to form a new tree, T1, with attribute references in the root tree.
Note that internal structure has been extracted; the second reference to T1 has
a non-leaf child, F , through outcome <ID1>.

Parts d) and e) show another aspect of the decomposition. Part d) shows
the root tree with a repeated di-node, two copies of the [A T1] F combination
mentioned above. In part e) these di-nodes have been extracted to form a new
tree, T2. Syntactically the repeated structure was constant size and so could be
detected quickly. However, because repeated references match, semantically the
repeated structure was a larger subtree.

In part e), T1 is only referenced once. In this case Lumberjack reinserts the
tree. This is shown in part f). This reinsertion is important for the algorithm.
As noted above, two di-nodes match only if they represent the same structure
decomposed in the same way. Reinsertion reduces the number of ways a concept
can be decomposed and so removes a barrier to matching equivalent subtrees.
Reducing the number of trees in the forest also reduces the number of possi-
ble decision nodes that could be introduced and so increases the speed of the
algorithm.

Figure 4 again shows a set of forests that could be generated while learn-
ing the function ABC ∨DEF . One can assume this was learnt from a different
dataset to the example in Fig. 3. Again, rather than use real data and MDL we
have chosen the decision nodes added at each stage ourselves to demonstrate as-
pects of the algorithm. Here we show Lumberjack reusing and refining previously
learnt subconcepts.

Again, we’ll skip some normal growth steps and start following in detail when
the tree in a) has been learnt. We’ll then assume our data causes DE to be grown
in another subtree leading to the forest in b). It is at this point that the first
repeated di-node, DE, is detected. The di-node is extracted to form a new tree
in part c).

Having found the substructure we can then immediately use it by splitting
on the new tree. The resulting forest is shown in part d).

Finally we can grow the forest at the leaves of any tree. In this case we’ll
grow tree T1 so that it represents the concept DEF (see part e)). This involves
removing leaf <ID1> and replacing it with a decision and two new leaves. Note
that in each of the references to T1 all the children through <ID1> were leaves.
These are removed and new children added for the new ID’s. Children through
other ID’s are unchanged.

4.3 MDL Coding of Linked Decision Forests

The Minimum Description Length (Rissanen 1983), or Minimum Message Length
(Wallace and Boulton 1968), Principle is a way of finding an inductive bias. It
uses Bayes’ Rule, P (T |D) ∝ P (T )P (D|T ), and Shannon’s information theory,
the optimal code length of a symbol that has probability p is − log2(p), to choose
between competing models for data. The model and data are both encoded ac-
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T0: Root
A B C True

False
False

D E F True
False

False
False

T0: Root
A B C True

False
D E True

False
False

D E F True
False

False
False

a) A tree representing part of the concept b) The tree with a duplicate di-node, DE

T1:
D E <ID1>

<ID2>

<ID3>

T0: Root
A B C True

False
[A T1] <ID1>: True

<ID2>: False
<ID3>: False

[A T1] <ID1>: F True
False

<ID2>: False
<ID3>: False

c) A forest where the duplicate di-node from b) has been separated into T1

T1:
D E <ID1>

<ID2>

<ID3>

T0: Root
A B C True

False
[A T1] <ID1>: F True

False
<ID2>: False
<ID3>: False

[A T1] <ID1>: F True
False

<ID2>: False
<ID3>: False

d) A forest with a duplicate di-node, [A T1] F .

T1:
D E <ID1>

<ID2>

<ID3>

T0: Root
A B C True

False
[A T2] <ID4>: True

<ID5>: False
<ID6>: False
<ID7>: False

[A T2] <ID4>: True
<ID5>: False
<ID6>: False
<ID7>: False

T2:
[A T1] <ID1>: F <ID4>

<ID5>

<ID2>: <ID6>

<ID3>: <ID7>

e) The duplicate from d) has been removed to form T2

T0: Root
A B C True

False
[A T2] <ID4>: True

<ID5>: False
<ID6>: False
<ID7>: False

[A T2] <ID4>: True
<ID5>: False
<ID6>: False
<ID7>: False

f) Tree T1 from e) has been re-inserted into T2

Fig. 3. A series of forests while learning the boolean function ABC∨DEF . This
series demonstrates the common substructure detection aspects of Lumberjack.



228 William T.B. Uther and Manuela M. Veloso

T0: Root
A B C True

False
False

D E True
False

False

T0: Root
A B C True

False
D E True

False
False

D E True
False

False
a) A tree representing part of the concept b) The tree with a duplicate di-node, DE

T0: Root
A B C True

False
[A T1] <ID1>: True

<ID2>: False
<ID3>: False

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

T1:
D E <ID1>

<ID2>

<ID3>

c) A forest where the duplicate di-node from b) has been separated into T1

T0: Root
A B C True

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

T1:
D E <ID1>

<ID2>

<ID3>

d) Tree T1 from c) has been reused

e) Tree T1 from d) has been extended

Fig. 4. A series of forests while learning the boolean function ABC∨DEF . This
series demonstrates the aspects of Lumberjack that result in a change of bias.
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Node Type Bits

Leaf log2(
b

b−1
)

decision node log2(b) + log2(NA + NPT )

Table 2. Costs to encode a non-root node

– For each value leaf in the forest
• Encode each example using − log2(pi,j) bits

where,

– i is the number of examples of this class we’ve seen so far in this leaf
– j is the total number of examples seen so far in this leaf
– M is the number of classes
– pi,j = i+1

j+M

Table 3. Costs of MDL example coding

cording to a coding scheme. The model which has the shortest total code length
is chosen.

The Lumberjack algorithm could also be used with other decision node selec-
tion criteria. MDL was chosen for ease of implementation and because it supplies
a stopping criterion.

Our coding scheme for MDL comparisons is a minor change from the Wallace
and Patrick (1993) scheme for decision trees. Let NT be the number of trees,
NA the number of attributes, NPT the number of trees after the current tree in
the topological ordering and b be the branching factor of our parent node. First,
the number of trees in the forest is encoded using L∗(NT ) bits.3 Then the trees
are encoded in reverse topological order. Each tree is encoded by performing a
pre-order traversal of the tree and encoding each node using the number of bits
shown in Table 2.

The one cost not yet specified is the cost to encode the root nodes of the
trees. These have no parent node; b is undefined. When there is only one tree, a
leaf at the root is encoded using log2(NA) bits and a decision node is encoded
using log2(

NA

NA−1 )+log2(NA) bits, as in Wallace and Patrick (1993). When there
is more than one tree, we know that none of the root nodes are leaves. The root
decision nodes can be encoded using only log2(NA + NPT ) bits. Finally, the
examples are encoded using the costs in Table 3.

3 L∗(X) = log∗
2(X) + log2(c), where c 	 2.865064, is a code length for an arbi-

trary integer. log∗
2(X) = log2(X) + log2(log2(X)) + . . . summing only positive terms

(Rissanen 1983).
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Fig. 5. Experimental results learning the concept ABC ∨DEF ∨GHI

5 Experiments

We tested Lumberjack using standard supervised learning experiments. We com-
pared the generalization accuracy of a decision tree learner and Lumberjack,
each using the same MDL coding. The results are shown in Figs. 5 and 6. The
graphs show the averages over 10 trials. We tested for significance using a paired
Wilcoxon rank-sum test (p = 0.05).

The first set of results are for the boolean function ABC ∨ DEF ∨ GHI.
Training samples were sampled with replacement from the concept, then the
output was flipped in 10% of the samples. The testing dataset was a complete
dataset without noise. Results are shown in Fig. 5. The difference in error rate
between the tree and forest algorithms is significant for sample sizes 1000 through
2500 inclusive, and also for the 3000 sample dataset.4

The second set of results uses a dataset generated by mapping a reinforcement
learning problem back into a supervised learning problem. In this domain a two
legged robot learns to walk about a simple 10×10 maze. The Robot cannot slide
its feet along the ground, nor can it hover with two feet in the air - it requires
a sequence of movements to walk. The robot knows its X, Y location and the
∆X , ∆Y and ∆Height differences between its legs. There are eight actions; the
robot can raise or lower either foot or it can move the raised foot, if any, in
any of the compass directions. This problem was fed into a traditional Markov
Decision Problem algorithm, and the resulting policy was used as a dataset
for our supervised learning experiment. The domain is discrete - the ∆’s each

4 We also compared with C4.5. C4.5 is always significantly better than the MDL tree
learning system. This is a well known deficiency of MDL vs. C4.5 and is orthogonal
to the use of Lumberjack style decomposition. With 1000 or more datapoints, C4.5
and Lumberjack perform similarly.
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Fig. 6. Experimental results learning a policy to walk through a maze

have only 3 possible values, and the X, Y location was encoded using a series
of variables {X < 1, X < 2, . . . , X < 9, Y < 1, Y < 2, . . . , Y < 9}. This coding
is similar to the one implicitly used by C4.5 for continuous variables. Training
datasets were generated by randomly sampling, with replacement, from this true
dataset. The testing dataset was the full true dataset.

Again the results, in Fig. 6, are the averages over 10 trials. There is a sig-
nificant difference between the two algorithms for sample sizes of 2000 or more.
While the results at sample size 4000 are still significant, it is clear that both al-
gorithms are converging again as sample size increases; the tree has enough data
to grow the repeated structure. Looking at the forest for large sample sizes it is
possible to see the separation of structure representing the maze from structure
representing the ability to walk.

6 Conclusion

We have introduced a new tree based representation, the linked decision forest,
and a learning algorithm, Lumberjack, that can use the linked forest represen-
tation. This representation doesn’t need to repeat substructure leading to more
efficient use of data.

We are currently extending this work along a number of dimensions. We are
moving to continuous input and output values. We are combining Lumberjack
with some of the tree based RL techniques mentioned earlier. We are investigat-
ing expanding the notion of equality in di-nodes to capture translation, and possi-
bly even scale, independent subconcepts. We have already extended Lumberjack
to have multiple root nodes in the forest and are extending Lumberjack to work
with multiple concepts.

The Lumberjack algorithm combines Sequitur style decomposition with
decision tree learning. Unlike decision graph generation algorithms, Lumberjack
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only decomposes internal nodes in the forest. This improves the representational
power of Lumberjack over decision graph algorithms, but this comes at a price:
Lumberjack currently does not join leaves even when this would be useful. We
have empirically shown improved generalization accuracy over a simple tree.

References

Breiman, Leo; Friedman, Jerome H.; Olshen, Richard A.; and Stone, Charles J. 1984.
Classification And Regression Trees. Wadsworth and Brooks/Cole Advanced Books
and Software, Monterey, CA.

Bryant, Randal E. 1992. Symbolic boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys 24(3):293–318.

Chapman, David and Kaelbling, Leslie Pack 1991. Input generalization in delayed
reinforcement learning: An algorithm and performance comparisons. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91),
Sydney, Australia. 726–731.
Kohavi, Ron 1995. Wrappers for Performance Enhancement and Oblivious Decision
Graphs. Ph. d. thesis, Department of Computer Science, Stanford University.

McCallum, Andrew Kachites 1995. Reinforcement Learning with Selective Perception
and Hidden State. Ph.D. Dissertation, Department of Computer Science, University
of Rochester.
Murphy, Patrick M. and Pazzani, Michael J. 1994. Exploring the decision forest:
An empirical invesitgation of occam’s razor in decision tree induction. Journal of
Artificial Intelligence Research 1:257–275.

Nevill-Manning, Craig G. and Witten, Ian H. 1997. Identifying hierarchical structures
in sequences: A linear-time algorithm. Journal of Artificial Intelligence Research 7:67–
82.

Nevill-Manning, Craig G. 1996. Inferring Sequential Structure. Ph. d. thesis, Com-
puter Science, University of Waikato, Hamilton, New Zealand.

Oliver, J. and Wallace, C. S. 1992. Inferring decision graphs. Technical Report 91/170,
Department of Computer Science, Monash University.

Pagallo, Giulia and Haussler, David 1990. Boolean feature discovery in empirical
learning. Machine Learning 5:71–99.

Quinlan, J. R. and Rivest, R. L. 1989. Inferring decision trees using the minimum
description length principle. Information and Computation 80(3):227–248.

Quinlan, J. Ross 1992. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA.

Rissanen, Jorma 1983. A universal prior for integers and estimation by minimum
description length. The Annals of Statistics 11(2):416–431.
Storer, J. A. 1982. Data compression via textual substitution. Journal of the Asso-
ciation for Computing Machinery 29(4):928–951.
Uther, William T. B. and Veloso, Manuela M. 1998. Tree based discretization for
continuous state space reinforcement learning. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, WI. 769–774.

Wallace, C. S. and Boulton, D. M. 1968. An information measure for classification.
Computer Journal 11(2):185–194.

Wallace, C. S. and Patrick, J. D. 1993. Coding decision trees. Machine Learning
11:7–22.



Reformulating Propositional Satisfiability as

Constraint Satisfaction

Toby Walsh

University of York, York, England.
tw@cs.york.ac.uk

Abstract. We study how propositional satisfiability (SAT) problems
can be reformulated as constraint satisfaction problems (CSPs). We anal-
yse four different mappings of SAT problems into CSPs. For each map-
ping, we compare theoretically the performance of systematic algorithms
like FC and MAC applied to the encoding against the Davis-Putnam
procedure applied to the original SAT problem. We also compare local
search methods like GSAT and WalkSAT on a SAT problem against
the Min-Conflicts procedure applied to its encoding. Finally, we look at
the special case of local search methods applied to 2-SAT problems and
encodings of 2-SAT problems. Our results provide insight into the rela-
tionship between propositional satisfiability and constraint satisfaction,
as well as some of the potential benefits of reformulating problems as
constraint satisfaction problems.

1 Introduction

A number of different computational problems have been solved by reformulating
them as propositional satisfiability (SAT) problems. Surprisingly, even problems
for higher complexity classes than SAT can be efficiently solved by reformulat-
ing them as (a sequence of) SAT problems. For example, Kautz and Selman’s
BLACKBOX system won the AIPS-98 planning competition by reformulating
STRIPS planning problems as a sequence of SAT problems [KS98a, KS98b].
Other computational problems as diverse as quasigroup existence, hardware di-
agnosis and spacecraft control have been translated into SAT problems and
solved efficiently. But is SAT the best choice as a target language for such refor-
mulation?
One possible weakness of SAT is that variables have only two possible values

(true or false). Constraint satisfaction, by comparison, offers a target language in
which variables can take larger domains. Such domains might allow us to model
problems more naturally and reason about them more efficiently. Another possi-
ble weakness of SAT is the limited number of systematic solvers available, most
of which are based upon the (now elderly) Davis-Putnam procedure. Constraint
satisfaction, by comparison, offers a vast array of systematic solvers (e.g. BT, FC,
MAC, BJ, CBJ, FC-CBJ, MAC, MAC-CBJ, DB, . . . ). To explore when refor-
mulating problems into CSPs is worthwhile, and to understand the relationship
between SAT and CSPs, we are studying mappings between SAT problems and
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CSPs. Bennaceur has previously looked at reformulating SAT problems as CSPs
[Ben96]. However, this study was limited to a single mapping. Since the choice
of mapping can have a very large impact on our ability to solve problems, it
is instructive to study the range of mappings possible between SAT problems
and CSPs. A more complete picture of the relationship between propositional
satisfiability and constraint satisfaction then starts to emerge, as well as of the
potential benefits of reformulating problems into constraint satisfaction prob-
lems.

2 Constraint Satisfaction

A constraint satisfaction problem (CSP) is a triple (X, D, C). X is a set of
variables. For each xi ∈ X , Di is the domain of the variable. Each k-ary con-
straint c ∈ C is defined over a set of variables (x1, . . . xk) by the subset of the
cartesian product D1 × . . . Dk which are consistent values. A binary CSP has
only binary constraints. A non-binary CSP has larger arity constraints. A so-
lution for a CSP is an assignment of values to variables that is consistent with
all constraints. Many lesser levels of consistency have been defined for binary
constraint satisfaction problems (see [DB97] for references). A binary CSP is
arc-consistent (AC) iff it has non-empty domains and every binary constraint is
arc-consistent. A binary constraint is arc-consistent iff any assignment to one of
the variables in the constraint can be extended to a consistent assignment for the
other variable. When enforcing arc-consistency, any value assigned to a variable
that cannot be extended to a second variable can be removed from the variable’s
domain. If all values for a variable are removed, a domain wipeout occurs, and
the problem is insoluble. Other stronger local consistencies have shown promise,
including singleton arc-consistency. A problem is singleton arc-consistent (SAC)
iff it has non-empty domains and for any assignment of a variable, the prob-
lem can be made arc-consistent. Singleton arc-consistency provides useful extra
pruning compared to arc-consistency at a moderate additional computational
expense [DB97].
Most of these definitions can be extended to non-binary constraints. For ex-

ample, a (non-binary) CSP is generalized arc-consistent (GAC) iff for any vari-
able in a constraint and value that it is assigned, there exist compatible values for
all the other variables in the constraint. Systematic algorithms for solving CSPs
typically maintain some level of consistency at every node in their search tree. For
example, the MAC algorithm for binary CSPs maintains arc-consistency at each
node in the search tree. The FC algorithm (forward checking) for binary CSPs
maintains arc-consistency only on those constraints involving the most recently
instantiated variable and those that are uninstantiated. Finally, for non-binary
CSPs, the nFC0 algorithm maintains generalized arc-consistency on those con-
straints involving one uninstantiated variables, whilst the nFC1 algorithm main-
tains generalized arc-consistency on those constraints and constraint projections
involving one uninstantiated variable [BMFL99]. Local search methods can also
be used to solve CSPs. For example, the Min-Conflicts procedure (MC) repairs
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a complete assignment by randomly choosing a variable that is in an unsatisfied
constraint, and giving it a new value which minimizes the number of violated
constraints.

3 Propositional Satisfiability

Given a propositional formula, the satisfiability (SAT) problem is to determine
if there is an assignment of truth values to the variables that makes the whole
formula true. One of the best systematic procedures to solve the SAT problem
is the so-called Davis-Putnam (DP) procedure (though it is actually due to
Davis, Logemann and Loveland [DLL62]). The DP procedure consists of three
main rules: the empty rule (which fails and backtracks when an empty clause is
generated), the unit propagation rule (which deterministically assigns any unit
literal), and the branching or split rule (which non-deterministically assigns a
truth value to a variable). As is often the case in implementations of DP, we will
ignore the pure literal and tautology rules (which deletes any tautologous clause)
as neither are needed for completeness or soundness, nor usually for efficiency.
Note that the unit propagation rule is effectively the “singleton” empty rule.
That is, if we assign the complement of an unit clause, the empty rule shows that
the resulting problem is unsatisfiable; we can therefore delete this assignment.
Local search methods can also be used to solve SAT problems. There are two
popular families of local search procedures based upon GSAT and WalkSAT. The
GSAT procedure repairs a complete truth assignment by flipping the truth value
of a variable that minimizes the number of unsatisfied clauses (sideways moves
are allowed). The WalkSAT procedure repairs a complete truth assignment by
flipping the truth value of a variable that occurs in an unsatisfied clause. The
variable is either chosen at random or using a greedy heuristic based on the
number of satisfied clauses.

4 Reformulating SAT Problems as CSPs

There are several different ways that a SAT problem can be reformulated as a
binary or non-binary CSP.

Dual encoding: We associate a dual variable, Di with each clause ci. The
domain of Di consists of those tuples of truth values which satisfy the clause
ci. For example, associated with the clause x1 ∨ x3 is a dual variable D1 with
domain {〈T , F 〉, 〈F , T 〉, 〈T , T 〉}. These are the assignments for x1 and x3 which
satisfy the clause x1 ∨ x3. Binary constraints are posted between dual variables
which are associated with clauses that share propositional variables in common.
For example, between the dual variableD1 associated with the clause x1∨x3 and
the dual variable D2 associated with the clause x2 ∨ ¬x3 is a binary constraint
that the second element of the tuple assigned to D1 must be the complement of
the second element of the tuple assigned to D2.
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Hidden variable encoding:We again associate a dual variable, Di with each
clause ci, the domain of which consists of those tuples of truth values which
satisfy the clause. However, we also have (propositional) variables xi with do-
mains {T , F}. A binary constraint is posted between a propositional variable
and a dual variable if its associated clause mentions the propositional variable.
For example, between the dual variable D2 associated with the clause x2 ∨ ¬x3

and the variable x3 is a binary constraint. This constrains the second element
of the tuple assigned to D2 to be the complement of the value assigned to x3.
There are no direct constraints between dual variables.

Literal encoding:We associate a variable, Di with each clause ci. The domain
ofDi consists of those literals which satisfy the clause ci. For example, associated
with the clause x1∨x3 is a dual variableD1 with domain {x1, x3}, and associated
with the clause x2 ∨ ¬x3 is a dual variable D2 with domain {x2,¬x3}. Binary
constraints are posted between Di and Dj iff the associated clause ci contains a
literal whose complement is contained in the associated clause cj . For example,
there is a constraint between D1 and D2 as the clause c1 contains the literal
x3 whilst the clause c2 contains the complement ¬x3. This constraint rules out
incompatible (partial) assignments. For instance, between D1 and D2 is the
constraint that allows D1 = x1 and D2 = x2, or D1 = x1 and D2 = ¬x3, or
D1 = x3 and D2 = x2. However, the assignment D1 = x3 and D2 = ¬x3 is ruled
out as a nogood. This encoding appears in [Ben96].

Non-binary encoding: The CSP has variables xi with domains {T, F}. A non-
binary constraint is posted between those variables that occurring together in
a clause. This constraint has as nogoods those partial assignments that fail to
satisfy the clause. For example, associated with the clause x1 ∨ x2 ∨ ¬x3 is a
non-binary constraint on x1, x2 and x3 that has a single nogood 〈F , F , T 〉.
Note that the literal encoding using variables with smaller domains than

the dual or hidden variable encodings. The dual variables have domains of size
O(2k) where k is the clause length, whilst the variables in the literal encoding
have domains of size just O(k). This could have a significant impact on runtimes.

5 Systematic Procedures

We now compare the performance of the Davis-Putnam (DP) procedure against
some popular systematic CSP algorithms like FC and MAC on these different
encodings. When comparing two algorithms that are applied to (possibly) differ-
ent representations of a problem, we say that algorithm A dominates algorithm
B iff algorithm A visits no more branches than algorithm B assuming “equiva-
lent” branching heuristics (we will discuss what we mean by “equivalent” in the
proofs of such results as the exact details depend on the two representations).
We say that algorithm A strictly dominates algorithm B iff it dominates and
there exists one problem on which algorithm A visits strictly fewer branches.
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5.1 Dual Encoding

There are several difficulties in comparing DP against algorithms like FC and
MAC applied to the dual encoding. One complication is that branching in DP
can instantiate variables in any order, but branching on the dual encoding must
follow the order of variables in the clauses. In addition, branching on the dual
encoding effectively instantiates all the variables in a clause at once. In DP, by
comparison, we can instantiate a strict subset of the variables that occur in a
clause. Consider, for example, the two clauses x1 ∨ . . . xk and y1 ∨ . . . yk. DP
can instantiate the xi and yj in any order. By comparison, branching on the
dual encoding either instantiates all the xi before the yj or vice versa. Similar
observations hold for the literal encodings. In the following results, therefore,
we start from a branching heuristic for the dual encoding and construct an
“equivalent” branching heuristic for DP. It is not always possible to perform the
reverse (i.e. start from a DP heuristic and construct an equivalent heuristic for
the dual encoding).

Theorem 1. Given equivalent branching heuristics, DP strictly dominates FC
applied to the dual encoding.

Proof. We show how to take the search tree explored by FC and map it onto
a proof tree for DP with no more branches. The proof proceeds by induction
on the number of branching points in the tree. Consider the root. Assume FC
branches on the variable Di associated with the SAT clause l1 ∨ l2 ∨ . . . ∨ lk.
There are 2k−1 children. We can build a corresponding proof subtree for DP with
at most 2k − 1 branches. In this subtree, we branch left at the root assigning
l1, and right assigning ¬l1. On both children, we branch left again assigning
l2 and right assigning ¬l2 unless l2 is assigned by unit propagation (in which
case, we move on to l3). And so on through the li until either we reach lk or
unit propagation constructs an empty clause. Note that we do not need to split
on lk as unit propagation on the clause l1 ∨ l2 ∨ . . . ∨ lk forces this instantiation
automatically. In the induction step, we perform the same transformation except
some of the instantiations in the DP proof tree may have been performed higher
up and so can be ignored. FC on the dual encoding removes some values from the
domains of future variables, but unit propagation in DP also effectively makes
the same assignments. The result is a DP proof tree (and implicitly an equivalent
branching heuristic for DP) which has no more branches than the tree explored
by FC. To show strictness, consider a 2-SAT problem with all possible clauses in
two variables: e.g. x1∨x2, ¬x1∨x2, x1∨¬x2, ¬x1∨¬x2. DP explores 2 branches
showing that this problem is unsatisfiable, irrespective of the branching heuristic.
FC, on the other hand, explores 3 branches, again irrespective of the branching
heuristic.

Theorem 1 shows that DP, in a slightly restricted sense, dominates FC applied
to the dual encoding. What happens if we maintain a higher level of consistency
in the dual encoding that that maintained by FC? Consider, for example, all
possible 2-SAT clauses in two variables. Enforcing arc-consistency on the dual
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encoding shows that this problem is unsatisfiable. However, as the problem does
not contain any unit clauses, unit propagation does not show it is unsatisfiable.
Hence enforcing arc-consistency on the dual encoding can do more work than
unit propagation. This might suggest that MAC (which enforces arc-consistency
at each node) might outperform DP (which only performs unit propagation at
each node). DP’s branching can, however, be more effective than MAC’s. As a
consequence, there are problems on which DP outperforms MAC, and problems
on which MAC outperforms DP, in both cases irrespective of the branching
heuristics used.

Theorem 2. MAC applied to the dual encoding is incomparable to DP.

Proof. Consider a k-SAT problem with all 2k possible clauses: x1 ∨x2 ∨ . . .∨xk,
¬x1 ∨ x2 ∨ . . . ∨ xk, x1 ∨ ¬x2 ∨ . . . ∨ xk, ¬x1 ∨ ¬x2 ∨ . . . ∨ xk, . . .¬x1 ∨ ¬x2 ∨
. . .∨¬¬xk . DP explores 2k−1 branches showing that this problem is unsatisfiable
irrespective of the branching heuristic. If k = 2, MAC proves that the problem
is unsatisfiable without search. Hence, MAC outperforms DP in this case. If
k > 2, MAC branches on the first variable (whose domain is of size 2k − 1) and
backtracks immediately. Hence MAC takes 2k−1 branches, and is outperformed
by DP.

5.2 Hidden Variable Encoding

We will restrict ourselves to branching heuristics that instantiate propositional
variables before the associated dual variables. It is then unproblematic to branch
in an identical fashion in the hidden variable encoding and in the SAT problem.

Theorem 3. Given equivalent branching heuristics, MAC applied to the hidden
variable encoding explores the same number of branches as DP.

Proof. We show how to take the search tree explored by DP and map it onto
a proof tree for MAC with the same number of branches (and vice versa). The
proof proceeds by induction on the number of propositional variables. In the
step case, consider the first variable branched upon by DP or MAC. The proof
divides into two cases. Either the first branch leads to a solution. Or we backtrack
and try both truth values. In either case, as unit propagation and enforcing
arc-consistency reduce both problems in a similar way, we have “equivalent”
subproblems. As these subproblems have one fewer variable, we can appeal to
the induction hypothesis.

What happens if we maintain a lower level of consistency in the hidden
variable encoding that that maintained by MAC? For example, what about the
FC algorithm which enforces only a limited form of arc-consistency at each node?
Due to the topology of the constraint graph of a hidden variable encoding, with
equivalent branching heuristic, FC can be made to explore the same number of
branches as MAC.
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Theorem 4. Given equivalent branching heuristics, FC applied to the hidden
variable encoding explores the same number of branches as MAC.

Proof. In FC, we need a branching heuristic which chooses first any propositional
variable with a singleton domain. This makes the same commitments as unit
propagation, without introducing any branching points. With such a heuristic,
FC explores a tree with the same number of branches as DP. Hence, using the
last result, FC explores a tree with the same number of branches as MAC.

5.3 Literal Encoding

DP can branch more effectively than MAC on the literal encoding (as we dis-
covered with the dual encoding). Since unit propagation in the SAT problem is
equivalent to enforcing arc-consistency on the literal encoding, DP dominates
MAC applied to the literal encoding.

Theorem 5. Given equivalent branching heuristic, DP strictly dominates MAC
applied to the literal encoding.

Proof. We show how to take the search tree explored by MAC and map it onto
a proof tree for DP with no more branches. The proof proceeds by induction on
the number of branching points in the tree. Consider the root. Assume MAC
branches on the variable Di associated with the SAT clause l1 ∨ l2 ∨ . . . ∨ lk.
There are k children, the ith child corresponding to the value li assigned to Di.
We can build a corresponding proof subtree for DP with k branches. In this
subtree, we branch left at the root assigning l1, and right assigning ¬l1. On the
right child, we branch left again assigning l2 and right assigning ¬l2. And so on
through the li until we reach lk. However, we do not naed to split on lk as unit
propagation on the clause l1∨ l2∨ . . .∨ lk forces this instantiation automatically.
Schematically, this transformation is as follows:

node(l1, l2, . . . , lk) ⇒ node(l1, node(l2, . . . node(lk−1, lk) . . .)).

In the induction step, we perform the same transformation except: (a) some
of the instantiations in the DP proof tree may have been performed higher up
and so can be ignored, and (b) the complement of some of the instantiations
may have been performed higher up and so we can close this branch by unit
propagation. The result is a DP proof tree (and implicitly a branching heuristic
for DP) which has no more branches than the tree explored by MAC. To prove
strictness, consider the example in the proof of the next theorem.

Although DP can explore a smaller search tree than MAC applied to the
literal encoding, both are exponential in the worst case. However, MAC’s worst
case behaviour scales with a larger exponent than DP’s. The problem with MAC
is that the branching factor of its search is governed by the clause size. Branching
propositionally (on whether a variable is true or false) can be more efficient.
Indeed, we can exhibit a class of problems on which the ratio of the number of
branches explored by DP compared to that explored by MAC vanishes to zero
as problem size grows.
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Theorem 6. There exists a class of SAT problems in n variables on which the
ratio of the number of branches explored by DP compared to that explored by MAC
on the literal encoding tends to zero as n → ∞, whatever branching heuristics
are used.

Proof. Consider a k-SAT problem with all 2k possible clauses: x1 ∨x2 ∨ . . .∨xk,
¬x1∨x2∨. . .∨xk, x1∨¬x2∨. . .∨xk, ¬x1∨¬x2∨. . .∨xk, . . .¬x1∨¬x2∨. . .∨¬¬xk.
DP explores 2k−1 branches showing that this problem is unsatisfiable irrespective
of the branching heuristic. However, MAC takes k! branches whatever variable
and value ordering we use. As k → ∞, the ratio of the number of branches ex-
plored by DP to that explored by MAC is O(2k/k!). By Stirling’s approximation,
this tends to zero.

5.4 Non-binary Encoding

If the SAT problem contains clauses with more than two literals, the non-binary
encoding contains non-binary constraints. Hence, we compare DP on the SAT
problem with algorithms that enforce (some level of) generalized arc-consistency
on the non-binary encoding. With equivalent branching heuristics, DP explores
the same size search tree as nFC0, the weakest non-binary version of the for-
ward checking algorithm. DP is, however, dominated by nFC1 (the next stronger
non-binary version of forward checking) and thus an algorithm that maintains
generalized arc-consistency at each node.

Theorem 7. Given equivalent branching heuristics, DP explores the same num-
ber of branches as nFC0 applied to the non-binary encoding.

Proof. We show how to take the proof tree explored by DP and map it onto a
search tree for nFC0 with the same number of branches. The proof proceeds by
induction on the number of propositional variables. In the step case, consider
the first variable branched upon by DP. The proof divides into two cases. Either
this is a branching point (and we try both possible truth values). Or this is not a
branching point (and unit propagation makes this assignment). In the first case,
we can branch in the same way in nFC0. In the second case, forward checking
in nFC0 will have reduced the domain of this variable to a singleton, and we
can also branch in the same way in nFC0. We now have a subproblem with one
fewer variable, and appeal to the induction hypothesis. The proof reverses in a
straightforward manner.

Theorem 8. Given equivalent branching heuristics, nFC1 applied to the non-
binary encoding strictly dominates DP.

Proof. Trivially nFC1 dominates nFC0. To show strictness, consider a 3-SAT
problem with all possible clauses in 3 variables: x1 ∨ x2 ∨ x3, ¬x1 ∨ x2 ∨ x3,
x1 ∨ ¬x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ x3, x1 ∨ x2 ∨ ¬x3, ¬x1 ∨ x2 ∨ ¬x3, x1 ∨ ¬x2 ∨ ¬x3,
¬x1 ∨ ¬x2 ∨ ¬x3. DP takes 4 branches to prove this problem is unsatisfiable
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whatever branching heuristic is used. nFC1 by comparison takes just 2 branches.
Suppose we branch on x1. The binary projection of the non-binary constraints
on x1, x2 and x3 onto x1 and x2 is the empty (unsatisfiable) constraint. Hence,
forward checking causes a domain wipeout.

6 Local Search Methods

It is more difficult to compare theoretically the performance of local search
procedures like GSAT on a SAT problem with methods like Min-Conflicts (MC)
applied to an encoding of this problem. For example, whilst the assignments for
the dual variables will often not be consistent with each other, the only values
allowed are those that satisfy the clauses. MC applied to the dual encoding
cannot therefore be in a part of the search space in which clauses are not satisfied.
By comparison, GSAT’s search is almost exclusively over states in which some of
the clauses are not satisfied. A similar observation applies to the literal encoding.
It is easier to make comparisons with the hidden variable and non-binary

encodings. With both these encodings, MC will have a complete assignment to
the (propositional) variables which, as in GSAT and WalkSAT, may not satisfy
all the clauses. One remaining difficulty is that most of the local search methods
have a stochastic component. Our comparison of search methods is therefore
of the form: if method A moves from state X to state Y , is there a non-zero
probability that method B can move between corresponding states in its search
space? If this is the case, we say that method B can simulate method A. This
means that, in theory at least, method B can follow the same trajectory through
the search space as method A. It does not mean that method B is necessarily
any more efficient than method A (or vice versa) as the probability that method
B can follow method A’s trajectory to a solution could be very small. However,
if method A cannot simulate method B and vice versa, it is likely that there will
be significant differences in their performance.

Theorem 9. MC on the non-binary encoding can neither simulate GSAT on
the original SAT problem nor vice versa.

Proof. Suppose we cannot increase the number of satisfied clauses by flipping
a single variable (this is a very common situation in GSAT’s search). Then it
is possible that GSAT will pick a variable to flip that only occurs in satisfied
clauses. MC, on the other hand, must pick a variable in one of the unsatisfied
clauses. Hence, MC cannot simulate GSAT. Suppose MC picks a variable in
an unsatisfied clause, and flipping it decreases the number of satisfied clauses
(again this is a very common situation in MC’s search). GSAT, on the other
hand, cannot pick this variable. Hence, GSAT cannot simulate MC.

Theorem 10. MC on the non-binary encoding can simulate WalkSAT on the
original SAT problem (and vice versa).
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Proof. Suppose WalkSAT picks a variable in an unsatisfied clause and flips it.
MC has a non-zero probability of picking the same clause and variable. Although
MC is limited to give this variable a new value which minimizes the number
of violated clauses, variables only have two values (true or false) so we flip it
the same way as WalkSAT. Hence MC can simulate WalkSAT. To show the
reverse, suppose MC picks a variable in an unsatisfied clause and flips it. Then
WalkSAT has a non-zero probability of picking the same clause and variable.
Hence WalkSAT can simulate MC.

In the hidden variable encoding, we focus on the variable assignments given
to the propositional variables (those given to the dual variables must, by con-
struction, satisfy all the clauses). We therefore ignore dual variables flipped by
MC and consider instead only those situations where MC flips one of the proposi-
tional variables. Note that since each constraint in the hidden variable encoding
is between a propositional and a dual variable, every unsatisfied constraint in
the hidden variable encoding contains a propositional variable which MC might
chose to flip.

Theorem 11. MC on the hidden variable encoding can neither simulate GSAT
on the original SAT problem nor vice versa.

Proof. Suppose we have two disjoint sets of clauses, one of which is satisfied and
the other not. GSAT can pick a variable to flip that occurs in the satisfied set.
MC applied to the hidden variable encoding, on the other hand, must pick a
variable in the unsatisfied set. Hence, MC applied the hidden variable encoding
cannot simulate GSAT. To show that the reverse also does not hold, observe that
MC applied to the hidden variable encoding may flip a propositional variable
that decreases the number of satisfied clauses. However, GSAT cannot flip such
a variable. Hence, GSAT cannot simulate MC.

Theorem 12. MC on the hidden variable encoding can simulate WalkSAT on
the original SAT problem (but not vice versa).

Proof. Suppose WalkSAT picks a variable in an unsatisfied clause and flips it.
MC has a non-zero probability of picking the same propositional variable as the
constraint between it and the dual variable associated with the unsatisfied clause
cannot be satisfied. As variables only have two values (true or false), we flip the
propositional variable in the same way as WalkSAT. Hence MC can simulate
WalkSAT. To show that the reverse may not hold, suppose we have two disjoint
sets of clauses, and a truth assignment which satisfies only one of the sets. Also
suppose that one of the dual variables associated with a clause in the satisfied
set has an assignment which contradicts the satisfying propositional assignment.
Now MC may flip one of the propositional variables associated with this clause.
WalkSAT, however, cannot flip this variable as it is not in an unsatisfied clause.
Hence WalkSAT cannot simulate MC. Note that we could modify MC so that
dual variables are always set according to the values given to the propositional
variables. WalkSAT can simulate this modified MC algorithm (and vice versa).
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6.1 2-SAT

For the tractable case of 2-SAT (in which each clause has 2 literals), we can
give more precise results comparing the performance of some simple local search
methods on the original SAT problem and on its encoding. We consider Pa-
padimitriou’s random walk (RW) algorithm which starts from a random truth
assignment, picks at random an unsatisfied clause and a variable within this
clause, and flips its truth assingment [Pap91]. A straight forward generaliza-
tion to CSPs is to start from a random assignment of values to variables, pick
at random a constraint that is violated and a variable within this constraint,
and randomly change this variable’s assignment. Papadimitriou has proved that
RW applied to a satisfiable 2-SAT problem can be expected to find a model in
quadratic time.

Theorem 13. RW is expected to take at most n2 flips to find a satisfying as-
signment for a satisfiable 2-SAT problem in n variables [Pap91].

Proof. The problem reduces to an one-dimensional random walk with a reflecting
and an absorbing barrier (or “gambler’s ruin against the sheriff”). We give the
details here as a similar proof construction is used in the next proof. Consider
a satisfying assignment S for the 2-SAT problem. Let N(i) be the expected
number of flips to find a satisfying assignment given that we start i flips away
from S. Now N(0) = 0. For i > 0, we chose one of the literals in an unsatisfied
clause. At least one of these literals must be true in S. Hence, we have at least a
half chance of moving closer to S. Thus, N(i) ≤ 1/2(N(i− 1)+N(i+1))+1 for
0 < i < n. And for i = n, N(n) ≤ N(n− 1)+ 1 since we must move nearer to S.
Consider the recurrence relationM(0) = 0,M(i) = 1/2(M(i−1)+M(i+1))+1
for 0 < i < n. and M(n) =M(n− 1)+ 1. We have M(i) ≥ N(i) for all i. And a
solution for M(i) is M(i) = 2in− i2. The worst case is i = n, when M(n) = n2.
Hence N(i) ≤ n2.

It follows from this result that the probability that RW finds a satisfy-
ing assignment after 2n2 flips is at least 1/2. This appeals to the lemma that
prob(x ≥ k.〈x〉) ≤ 1/k for any k > 0 where 〈x〉 is the expected value of x. The
(generalized) RW algorithm applied to the literal encoding of a 2-SAT problem
also runs in expected quadratic time.

Theorem 14. RW is expected to take at most l2 flips to find a satisfying as-
signment when applied to the literal encoding of a satisfiable 2-SAT problem in
l clauses.

Proof. The problem again reduces to an one-dimensional random walk with a
reflecting and an absorbing barrier. However, there are now l variables (one for
each clause), each with two possible values. Again, the probability of flipping one
of these variables and moving nearer to a (distinguished) satisfying assignment
is at least 1/2. Hence, the expected number of flips is at most l2.
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Note that RW on the literal encoding is expected to take (at most) l2 flips
whilst RW on the original 2-SAT problem is expected to take (at most) n2 flips.
Performance is likely to be similar as l and n for satisfiable 2-SAT problems
tend to be closely related. For instance, the phase transition for random 2-SAT
problems occurs around l/n = 1 [CR92, Goe92]. That is, in the limit random
2-SAT problems are almost always satisfiable for l/n < 1, and almost always
unsatisfiable for l/n > 1.
There is little point in considering the non-binary encoding of the 2-SAT

problem as this reduces to a binary CSP which is isomorphic in structure to the
original 2-SAT problem. Hence RW will perform in an identical manner on this
encoding as on the original 2-SAT problem. Analysing the behaviour of RW on
the dual and hidden variable encoding of 2-SAT problems is more problematic
as the dual variables have domains of size 3, and correspond to the assignment
of values to pairs of variables.

7 Related Work

Bennaceur studied the literal encoding for reformulating SAT problems as CSPs
[Ben96]. He proved that enforcing arc-consistency on the literal encoding is equiv-
alent to unit propagation. Bennaceur also proved that a CSP is arc-consistent
iff its literal encoding has no unit clauses, and strong path-consistent iff it has
no unit or binary clauses. Bacchus and van Beek present one of the first detailed
studies of encodings of non-binary CSPs into binary CSPs [BvB98]. The dual
and hidden variable encodings studied here can be constructed by composing
the non-binary encoding of SAT problems into non-binary CSPs, with the dual
and hidden variable encodings of non-binary CSPs into binary CSPs. Bacchus
and van Beek’s study is limited to the FC algorithm (and a simple extension
called FC+). Stergiou and Walsh look at the maintenance of higher levels of
consistency, in particular arc-consistency within these encodings [SW99]. They
prove that arc-consistency on the dual encoding is strictly stronger than arc-
consistency on the hidden variable, and this itself is equivalent to generalized
arc-consistency on the origianl (non-binary) CSP. More recently, van Beek and
Chen have shown that reformulating planning problems as constraint satisfaction
problems (CSPs) using their CPlan system is highly competitive [vBC99].

8 Conclusions

We have performed a comprehensive study of reformulations of propositional
satisfiability (SAT) problems as constraint satisfaction problems (CSPs). We
analysed four different mappings of SAT problems into CSPs: the dual, hidden
variable, literal and non-binary encodings. We compared theoretically the perfor-
mance of systematic search algorithms like FC and MAC applied to these encod-
ings against the Davis-Putnam procedure. Given equivalent branching heuristics,
DP strictly dominates FC applied to the dual encoding, is incomparable to MAC
applied to the dual encoding, explores the same number of branches as MAC
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applied to the hidden variable encoding, and strictly dominates MAC applied
to the literal encoding. We also compared local search methods like GSAT and
WalkSAT against the Min-Conflicts procedure applied to these encodings. On
the hidden variable and non-binary encodings, we showed that the WalkSAT and
Min-Conflicts procedures could follow similar trajectories through their search
space. However, this was not necessarily the case for the GSAT and Min-Conflicts
procedures. We also proved that a simple random walk procedure is expected to
take quadratic time on the literal encoding of a 2-SAT problem, similar to the
performance of the procedure applied directly to the 2-SAT problem.
What general lessons can be learned from this study? First, the choice of en-

coding can have a large impact on search. For example, despite the higher level of
consistency achieved by enforcing arc-consistency in the dual encoding compared
to unit propagation on the original SAT problem, DP applied to the original
SAT problem can sometimes beat MAC applied to the dual encoding because
DP allows more flexible branching heuristics. Second, comparing theoretically
the performance of local search procedures on these mappings is problematic.
For instance, the state space explored by Min-Conflicts applied to the dual en-
coding is completely different to that explored by GSAT. Empirical studies may
therefore be the only way we can make informative comparisons between such
local search procedures. Third, whilst a clearer picture of the relationship be-
tween SAT problems and CSPs is starting to emerge, there are several questions
which remain unanswered. For example, how do non-chronological backtracking
procedures like backjumping [Dec90] and dynamic backtracking [Gin93] compare
on these different encodings? What is the practical impact of these theoretical
results? And finally, do mappings in the opposite direction (i.e. of CSPs into
SAT) support similar conclusions?
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Abstract. We investigate the possibility of improving the efficiency of reasoning
through structure-based partitioning of logical theories, combined with partition-
based logical reasoning strategies. To this end, we provide algorithms for reason-
ing with partitions of axioms in first-order and propositional logic. We analyze
the computational benefit of our algorithms and detect those parameters of a par-
titioning that influence the efficiency of computation. These parameters are the
number of symbols shared by a pair of partitions, the size of each partition, and
the topology of the partitioning. Finally, we provide a greedy algorithm that au-
tomatically reformulates a given theory into partitions, exploiting the parameters
that influence the efficiency of computation.

1 Introduction

There is growing interest in building large knowledge bases (KBs) of everyday knowl-
edge about the world, teamed with theorem provers to perform inference. Three such
systems are Cycorp’s Cyc, and the High Performance Knowledge Base (HPKB) sys-
tems developed by Stanford’s Knowledge Systems Lab (KSL) [21] and by SRI (e.g.,
[13]). These KBs comprise tens/hundreds of thousands of logical axioms. One approach
to dealing with the size and complexity of these KBs is to structure the content in some
way, such as into multiple domain- or task-specific KBs, or into microtheories. In this
paper, we investigate how to reason effectively with partitioned sets of logical axioms
that have overlap in content, and that may even have different reasoning engines. Fur-
thermore, we investigate the problem of how to exploit structure inherent in a set of
logical axioms to induce a partitioning of the axioms that will improve the efficiency of
reasoning.

To this end, we propose partition-based logical reasoning algorithms, for reasoning
with logical theories1 that are decomposed into related partitions of axioms. Given a
partitioning of a logical theory, we use Craig’s interpolation theorem [16] to prove the
soundness and completeness of a forward message-passing algorithm and an algorithm
for propositional satisfiability. The algorithms are designed so that, without loss of gen-
erality, reasoning within a partition can be realized by an arbitrary consequence-finding

� Much of the material presented in this abstract appeared in [2].
1 In this paper, every set of axioms is a theory (and vice versa).

B.Y. Choueiry and T. Walsh (Eds.): SARA 2000, LNAI 1864, pp. 247–259, 2000.
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engine, in parallel with reasoning in other partitions. We investigate the impact of these
algorithms on resolution-based inference, and analyze the computational complexity
for our partition-based SAT.

A critical aspect of partition-based logical reasoning is the selection of a good par-
titioning of the theory. The computational analysis of our partition-based reasoning al-
gorithms provides a metric for identifying parameters of partitionings that influence the
computation of our algorithms: the bandwidth of communication between partitions,
the size of each partition, and the topology of the partitions graph. These parameters
guide us to propose a greedy algorithm for decomposing logical theories into partitions,
trying to optimize these parameters.

(1) ¬ok pump ∨ ¬on pump ∨ water
(2) ¬man fill ∨ water
(3) ¬man fill ∨ ¬on pump
(4) man fill ∨ on pump

(5) ¬water∨¬ok boiler∨¬on boiler∨steam
(6) water ∨ ¬steam
(7) ok boiler ∨ ¬steam
(8) on boiler ∨ ¬steam

(9) ¬steam ∨ ¬coffee ∨ hot drink
(10) coffee ∨ teabag
(11) ¬steam ∨ ¬teabag ∨ hot drink

A A1

A2

A3

¬ok pump ∨ ¬on pump ∨ water
¬man fill ∨ water
¬man fill ∨ ¬on pump
man fill ∨ on pump
¬water ∨ ¬ok boiler ∨ ¬on boiler ∨ steam
water ∨ ¬steam
ok boiler ∨ ¬steam
on boiler ∨ ¬steam
¬steam ∨ ¬coffee ∨ hot drink
coffee ∨ teabag
¬steam ∨ ¬teabag ∨ hot drink

water

steam

Fig. 1. A partitioning of A and its intersection graph.

Surprisingly, there has been little work on the specific problem of exploiting struc-
ture in theorem proving in the manner we propose. This can largely be attributed to the
fact that theorem proving has traditionally examined mathematics domains, that do not
necessarily have structure that supports decomposition. Nevertheless, there are many
areas of related work, some of which we discuss at the end of this paper.

2 Partition-Based Theorem Proving

In this section we address the problem of how to reason with an already partitioned
propositional or first-order logic (FOL) theory. In particular, we propose a forward
message-passing algorithm, in the spirit of Pearl [34], and examine the effect of this
algorithm on resolution-based inference.
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{Ai}i≤n is a partitioning of a logical theory A if A =
⋃

iAi. Each individual
Ai is called a partition, and L(Ai) is its signature (the non-logical symbols). Each
such partitioning defines a labeled graph G = (V,E, l), which we call the intersection
graph. In the intersection graph, each node i represents an individual partitionAi, (V =
{1, ..., n}), two nodes i, j are linked by an edge if L(Ai) and L(Aj) have a symbol in
common (E = {(i, j) | L(Ai) ∩ L(Aj) �= ∅}), and the edges are labeled with the set
of symbols that the associated partitions share (l(i, j) = L(Ai) ∩ L(Aj)). We refer to
l(i, j) as the communication language between partitions Ai and Aj . We ensure that
the intersection graph is connected by adding a minimal number of edges to E with
empty labels, l(i, j) = ∅.

We illustrate the notion of a partitioning in terms of the simple propositional theory
A, depicted at the top of Figure 1. This set of axioms captures the functioning of aspects
of an expresso machine. The top four axioms denote that if the machine pump is OK
and the pump is on then the machine has a water supply. Alternately, the machine can
be filled manually, but it is never the case that the machine is manually filling while the
pump is on. The second four axioms denote that there is steam if and only if the boiler
is OK and is on, and there is a supply of water. Finally, there is always either coffee or
tea. Steam and coffee (or tea) result in a hot drink.

2.1 Forward Message Passing

In this section we propose a forward message-passing algorithm for reasoning with
partitions of first-order and propositional logical axioms. Figure 2 describes our forward
message-passing algorithm, FORWARD-M-P (MP) for finding the truth value of query
formula Q whose signature is in L(Ak), given partitioned theory A and graph G =
(V,E, l), possibly the intersection graph of A, but not always so.

PROCEDURE FORWARD-M-P({Ai}i≤n, G, Q)
{Ai}i≤n a partitioning of the theory A, G = (V,E, l) a graph describing the connections
between the partitions, Q a query formula in the language of L(Ak) (k ≤ n).

1. Let dist(i, j) (i, j ∈ V ) be the length of the shortest path between i, j in G. Let i ≺ j iff
dist(i, k) < dist(j, k) (≺ is a strict partial order).

2. Concurrently perform consequence finding for each of the partitions Ai, i ≤ n.
3. For every (i, j) ∈ E such that i ≺ j, if we proveAj |= ϕ and ϕ’s signature is inL(l(i, j)),

then add ϕ to the set of axioms of Ai.
4. If we proved Q in Ak, return YES.

Fig. 2. A forward message-passing algorithm.

This algorithm exploits consequence finding (step 2) to perform reasoning in the
individual partitions. Consequence finding was defined by Lee [27] to be the problem
of finding all the logical consequences of a theory or sentences that subsume them.

In MP, we can use any sound and complete consequence-finding algorithm. The
resolution rule is complete for consequence finding (e.g., [27, 41]) and a the same is
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Using FORWARD-M-P to prove hot drink

Part. Resolve Generating
A1 (2) , (4) on pump ∨ water (m1)

A1 (m1), (1) ok pump ∨ water (m2)

A1 (m2), (12) water (m3)

clause water passed from A1 to A2

A2 (m3) , (5) ok boiler ∧ on boiler ⊃ steam (m4)

A2 (m4) , (13) ¬on boiler ∨ steam (m5)

A2 (m5) , (14) steam (m6)

clause steam passed from A2 to A3

A3 (9) , (10) ¬steam ∨ teabag ∨ hot drink (m7)

A3 (m7) , (11) ¬steam ∨ hot drink (m8)

A3 (m8) , (m6) hot drink (m9)

Fig. 3. A proof of hot drink from A in Figure 1 after asserting ok pump (12) in A1

and ok boiler (13), on boiler (14) in A2.

true for several linear resolution variants (e.g., [31, 25]). Semantic resolution and set-of-
support resolution are complete for consequence finding, but only in a limited way [42].
Such consequence finders are used for prime implicate generation in applications such
as diagnosis. Inoue [25] provides an algorithm for selectively generating consequences
or characteristic clauses in a given sub-vocabulary. We can exploit this algorithm to fo-
cus consequence finding on axioms whose signature is in the communication language
of the partition. Figure 3 illustrates an execution of MP using resolution.

Given a partitioning whose intersection graph forms an undirected tree, our MP
algorithm is a sound and complete proof procedure. The completeness relies on Craig’s
Interpolation Theorem [16], as we prove in [2]. When the intersection graph is not a
tree, the cycles in the graph must first be broken and then MP applied. In [2] we present
an algorithm, BREAK-CYCLES that transforms the intersection graph into a tree by
removing edges from the graph and adding their labels to some of the edges that are
left. We then show that MP combined with BREAK-CYCLES is sound and complete.

Theorem 1 (Craig’s Interpolation Theorem [16]). If α 	 β, then there is a formula
γ involving only symbols common to both α and β, such that α 	 γ and γ 	 β.

It is important to notice that although MP was illustrated with respect to an exam-
ple in propositional logic, it was designed primarily for first-order theorem proving.
The results above are valid for first-order theories as well as propositional ones. A pro-
cedure solely for propositional satisfiability is presented in Section 3. We discuss the
application and limitation of MP in the following section.
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2.2 Resolution-Based Inference

We now analyze the effect of forward message-passing (MP) on the computational effi-
ciency of resolution-based inference, and identify some of the parameters of influence.
Current measures for comparing automated deduction strategies are insufficient for our
purposes. Proof length (e.g., [24]) is only marginally relevant. More relevant is compar-
ing the sizes of search spaces of different strategies (e.g., [35]). Both measures do not
precisely address our needs, but we use them here, leaving better comparison for future
work.

In a resolution search space, each node includes a set of clauses, and properties
relevant to the utilized resolution strategy (e.g., clause parenthood information). Each
arc is a resolution step allowed by the strategy. In contrast, in an MP resolution search
space the nodes also include partition membership information. Further, each arc is a
resolution step allowed by the utilized resolution strategy that satisfies either of: (1)
the two axioms are in the same partition, or (2) one of the axioms is in partition Aj ,
the second axiom is drawn from its communication language l(i, j), and the query-
based ordering allows the second axiom to be sent from Ai to Aj . Legal sequence of
resolutions correspond to paths in these spaces.

Proposition 1. Let A =
⋃

i≤nAi be a partitioned theory. Any path in the MP res-
olution search space of {Ai}i≤n is also a path in the resolution search space of the
unpartitioned theoryA.

From the point of view of proof length, it follows that the longest proof without using
MP is as long or longer than the longest MP proof. Unfortunately, the shortest MP
proof may be longer than the shortest possible proof without MP. This observation can
be quantified most easily in the simple case of only two partitions A1,A2. The set of
messages that need to be sent from A1 to A2 to prove Q is exactly the interpolant γ
promised by Theorem 1 for α = A1, β = A2 ⇒ Q. The MP proof has to prove α 	 γ
and γ 	 β. Carbone [12] showed that, if γ is a minimal interpolant, then for many
important cases the proof length of α 	 γ together with the proof length of γ 	 β is in
O(k2) (for sequent calculus with cuts), where k is the length of the minimal proof of
α 	 β .

In general, the size of γ itself may be large. In fact, in the propositional case it
is an open question whether or not the size of the smallest interpolant can be poly-
nomially bounded by the size of the two formulae α, β. A positive answer to this
question would imply an important consequence in complexity theory, namely that
NP ∩ coNP ⊆ P/poly [10]. Nevertheless, there is a good upper bound on the length
of the interpolation formula as a function of the length of the minimal proof [26] : If
α, β share l symbols, and the resolution proof of α 	 β is of length k, then there is an
interpolant γ of length min(klO(1), 2l).

The limits reported above are important for computational space considerations.
The facts above imply a limit on the space used in the propositional case of MP: It may
in general take exponential space, but only in as much as the underlying proof procedure
does. It does not add more than a polynomial amount of space on top of a resolution
theorem prover. A comparison between resolution theorem proving and a satisfiability
search procedure is reported in [20, 37].
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To conclude, we can guarantee low amounts of computation and space, if we make
sure the communication language is minimal. Unfortunately, we do not always have
control over the communication language, as in the case of multiple KBs that have
extensive overlap. In such cases, the communication language between KBs may be
large, possibly resulting in a large interpolant. In Section 4 we provide an algorithm for
partitioning theories that attempts to minimize the communication language between
partitions.

3 Propositional Satisfiability

The algorithm we propose in this section uses a SAT procedure as a subroutine and is
back-track free. We describe the algorithm using database notation [45]. πp1,...,pk

T is
the projection operation on a relation T . It produces a relation that includes all the rows
of T , but only the columns named p1, ..., pk (suppressing duplicate rows). S 1 R is the
natural join operation on the relations S and R. It produces the cross product of S,R,
selecting only those entries that are equal between identically named fields (checking
S.A = R.A), and discarding those columns that are now duplicated (e.g., R.A will be
discarded).

The proposed algorithm shares some intuition with prime implicate generation (e.g.,
[29, 25]). Briefly, we first compute all the models of each of the partitions (akin to
computing the implicates of each partition). We then use 1 to combine the partition
models into models for A. The algorithm is presented in Figure 4.

PROCEDURE LINEAR-PART-SAT({Ai}i≤n)
{Ai}i≤n a partitioning of the theory A,

1. G0 ← the intersection graph of {Ai}i≤n. G← BREAK-CY CLES(G0).
2. ∀i ≤ n, let L(i) =

S
(i,j)∈E l(i, j).

3. ∀i ≤ n, for every truth assignment A to L(i), find satisfying truth assignments ofAi ∪A,
storing the result in a table Ti(A).

4. Let dist(i, j) (i, j ∈ V ) be the length of the shortest path between i, j in G. Let i ≺ j iff
dist(i, 1) < dist(j, 1) (≺ is a strict partial order).

5. Iterate over i ≤ n in reverse ≺-order (the last i is 1). ∀j ≤ n such that (i, j) ∈ E and
i ≺ j, perform:

– Ti ← Ti 1 (πL(i)Tj) (Join Ti with those columns of Tj that correspond to L(i)). If
Ti = ∅, return FALSE.

6. Return TRUE.

Fig. 4. An algorithm for SAT of a partitioned propositional theory.

The iterated join that we perform takes time proportional to the size of the tables
involved. We keep table sizes below 2|L(i)| (L(i) computed in step 2), by projecting
every table before joining it with another. Soundness and completeness follow by an
argument similar to that given for MP, which can be found in [2].
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Let A be a partitioned propositional theory with n partitions. Let m = |L(A)|,
L(i) the set of propositional symbols calculated in step 2 of LINEAR-PART-SAT, and
mi = |L(Ai) \ L(i)| (i ≤ n). Let a = |A| and k be the length of each axiom.

Lemma 1. The time taken by LINEAR-PART-SAT to compute SAT for A is

T ime(n,m,m1, ...,mn, a, k, |L(1)|, ..., |L(n)|) =

O(a ∗ k2 + n4 ∗m +
n∑

i=1

(2|L(i)| ∗ fSAT (mi))),

where fSAT is the time to compute SAT. Furthermore, if P �= NP and in G all the
partitionsAi have the same number of propositional symbols, then LINEAR-PART-SAT
computes SAT for A in time

T ime(m,n, l, d) = O(n ∗ 2d∗l ∗ fSAT (
m

n
)).

where d = maxv∈V d(v) (d(v) is the degree of node v) and l = maxi,j≤n|l(i, j)|.
For example, if we partition a given theoryA into only two partitions (n = 2), sharing l
propositional symbols, the algorithm will take time O(2l ∗ fSAT (m

2 )). Assuming P �=
NP , this is a significant improvement over a simple SAT procedure, for every l that is
small enough (l < αm

2 , and α ≤ 0.582 [38, 14]).
It is important to notice that both the MP procedure (Figure 2) and the LINEAR-

PART-SAT procedure (Figure 4) focus on structured problems and not random ones. In
structured problems the labels of the links are small, leading to only a small overhead
in space. Lemma 1 and Section 2.2 show that the size of tables and size of messages
sent is exponentially dependent on the size of links between partitions. In a random
problem it is possible that in any decomposition the links may be large, leading to
possibly exponential computational space. In structured problems the links are small,
thus avoiding such risk.

4 Decomposing a Logical Theory

The algorithms presented in previous sections assumed a given partitioning. In this sec-
tion we address the critical problem of automatically decomposing a set of propositional
or FOL clauses into a partitioned theory. Guided by the results of previous sections, we
propose guidelines for achieving a good partitioning, and present a greedy algorithm
that decomposes a theory following these guidelines.

4.1 A Good Partitioning

Given a theory, we wish to find a partitioning of that theory that minimizes the for-
mula derived in Lemma 1. To that end, assuming P �= NP , we want to minimize the
following parameters for all i ≤ n.
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1. |L(i)| - the total number of symbols contained in all links to/from node i. If G0 is
already a tree, this is the number of symbols shared between the partition Ai and
the rest of the theoryA \ Ai.

2. mi - the number of symbols in a partition, less those in the links, i.e., in Ai \ L(i).
Typically, having more partitions causes mi to become smaller.

3. n - the number of partitions.

Also, a simple analysis shows that given fixed values for l, d in Corollary 1, the
maximal n that maintains l, d such that also n ≤ ln2 ∗ α ∗ m (α = 0.582 [38, 14])
yields an optimal bound for LINEAR-PART-SAT. In Section 2.2 we saw that the same
parameters influence the number of derivations we can perform in MP: |L(i)| influ-
ences the interpolant size and thus the proof length, and mi influences the number of
deductions/resolutions we can perform. Thus, we would like to minimize the number
of symbols shared between partitions and the number of symbols in each partition less
those in the links.

The question is, how often do we get large n (many partitions), small mi’s (small
partitions) and small |L(i)|’s (weak interactions) in practice. We believe that in domains
that deal with engineered physical systems, many of the domain axiomatizations have
these structural properties. Indeed, design of engineering artifacts encourages modu-
larization, with minimal interconnectivity (see [1, 28, 13]). More generally, we believe
axiomatizers of large corpora of real-world knowledge tend to try to provide structured
representations following some of these principles.

4.2 Vertex Min-Cut in the Graph of Symbols

To exploit the partitioning guidelines proposed in the previous subsection, we represent
our theory A using a symbols graph that captures the features we wish to minimize.
G = (V,E) is a symbols graph for theory A such that each vertex v ∈ V is a symbol
in L(A), and there is an edge between two vertices if their associated symbols occur in
the same axiom of A , i.e., E = {(a, b) | ∃α ∈ A s.t. a, b appear in α}.

Figure 5 illustrates the symbols graph of theory A (top) from Figure 1 and the
connected symbols graphs (bottom) of the individual partitions A1,A2,A3. The sym-
bols ok p, on p, m f , w, ok b, on b, s, c, t, h d are short for ok pump, on pump,
man fill, water, ok boiler, on boiler, steam, coffee, teabag, hot drink, respec-
tively. Notice that each axiom creates a clique among its constituent symbols. To min-
imize the number of symbols shared between partitions (i.e., |L(i)|), we must find par-
titions whose symbols have minimal vertex separators in the symbols graph.

We briefly describe the notion of a vertex separator. Let G = (V,E) be an undi-
rected graph. A set S of vertices is called an (a, b) vertex separator if {a, b} ⊂ V \ S
and every path connecting a and b in G passes through at least one vertex contained in
S. Thus, the vertices in S split the path from a to b. Let N(a, b) be the least cardinality
of an (a, b) vertex separator. The connectivity of the graph G is the minimal N(a, b) for
any a, b ∈ V that are not connected by an edge.

Figure 6 presents a greedy recursive algorithm that uses Even’s algorithm to find sets
of vertices that together separate a graph into partitions. The algorithm returns a set of
symbols sets that determine the separate subgraphs. Different variants of the algorithm
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Fig. 5. DecomposingA’s symbols graph.

PROCEDURE SPLIT(G, M , l, a, b)
G = (V,E) is an undirected graph. M is the limit on the number of symbols in a partition. l is
the limit on the size of links between partitions. a, b are in V or are nil.

1. If |V | < M then return the graph with the single symbol set V .
2. (a) If a and b are both nil, find a minimum vertex separator R in G. (b) Otherwise, if b is

nil, find a minimum vertex separator R in G that does not include a. (c) Otherwise, find a
minimum vertex separator R in G that separates a and b.
If R > l then return the graph with the single symbol set V .

3. Let G1, G2 be the two subgraphs of G separated by R, withR included in both subgraphs.
4. Create G′

1, G
′
2 from G1, G2, respectively, by aggregating the vertices in R into a single

vertex r, removing all self edges and connecting r with edges to all the vertices connected
by edges to some vertices in R.

5. Set V 1 = SPLIT (G′
1,M, l, r, a) and V 2 = SPLIT (G′

2,M, l, r, b).
6. Replace r in V 1, V 2 by the members of R. Return V 1, V 2.

Fig. 6. An algorithm for generating symbol sets that define partitions.

yield different structures for the intersection graph of the resulting partitioning. As is,
SPLIT returns sets of symbols that result in a chain of partitions. We obtain arbitrary
trees, if we change step 2(c) to find a minimum separator that does not include a, b (not
required to separate a, b). We obtain arbitrary graphs, if in addition we do not aggregate
R into r in step 4.

Proposition 2. Procedure SPLIT takes time O(|V | 52 ∗ |E|).
Finally, to partition a theory A, create its symbols graph G and run SPLIT(G, M ,

l, nil, nil). For each set of symbols returned, define a partition Ai that includes all the
axioms of A in the language defined by the returned set of symbols.

We know of no easy way to find an optimal selection of l (the limit on the size of
the links) and M (the limit on the number of symbols in a partition) without having
prior knowledge of the dependency between the number (and size) of partitions and l.
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However, we can find out when a partitioning no longer helps computation (compared
to the best time bound known for SAT procedures [38, 14]). Our time bound for the
procedure is lower than Θ(2αm) when l ≤ αm−αmi−lgn

d (i = argmaxjmj). In partic-
ular, if l > m

2 , a standard deterministic SAT procedure will be better. Hence, l and M
are perhaps best determined experimentally.

5 Related Work

Many AI researchers have exploited structure to improve the efficiency of reasoning
(e.g., Bayes Nets [34], Markov decision processes [11], CSPs [18], and model-based
diagnosis [17]). There is also a vast literature in both clustering and decomposition
techniques.

Decomposition has not been exploited in theorem proving until recently (see [6,
7]). We believe that part of the reason for this lack of interest has been that theorem
proving has focused on mathematical domains that do not necessarily have structure
that supports decomposition. Work on theorem proving has focused on decomposition
for parallel implementations [8, 5, 15, 43] and has followed decomposition methods
guided by lookahead and subgoals, neglecting the types of structural properties we used
here. Another related line of work focuses on combining logical systems (e.g., [32, 40,
3, 36, 44]). Contrasted with this work, we focus on interactions between theories with
overlapping signatures, the efficiency of reasoning, and automatic decomposition.

Decomposition for propositional SAT has followed different tracks. Perhaps the
most relevant work to ours is [19], which presented algorithms for reasoning with de-
composed CSPs. These can be used for SAT, using a given decomposition. In compar-
ison, the algorithm we presented for partitioned SAT does not produce all the models
possible in each partition, as proposed in [19]. Instead, it finds the truth values for propo-
sitions on the links that are extendible to a satisfying truth assignment for the whole
partition. This reduces our computation time and makes it more dependent on the links’
sizes rather than on partition sizes. Other work focused on heuristics for clause weight-
ing or symbol ordering (e.g., [39, 20]). Concurrently to our work, Rish and Dechter
[37] have proposed an algorithm similar to our MP for the case of propositional ordered
resolution. Aside from looking at only a limited case (ordered resolution, propositional
logic), they allow excessive computation (they do the equivalent of performing all pos-
sible resolutions in each partition, twice) thus possibly using exponential amounts of
space and time over and above MP in the same settings.

Other SAT decomposition methods include [33] which suggested a decomposition
procedure that represents the theory as a hypergraph of clauses and divides the proposi-
tional theory into two partitions (heuristically minimizing the number of hyperedges),
modifying ideas described in [22]. [15] developed an algorithm that partitions a propo-
sitional theory into connected components. Both [15, 33] performed experiments that
demonstrated a decrease in the time required to prove test sets of axioms unsatisfiable.

Compared to work on automated decomposition for reasoning in Bayes-networks
and CSPs (e.g., [4]), our work is the first to address the problem of defining guidelines
and parameters for good decompositions of sets of axioms for the purpose of logi-
cal reasoning. Earlier work assumes that reasoning inside a given partition takes time
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O(2m) (m is the number of propositions in the partition), which is not necessarily the
case in logical reasoning (in either model finding or proof finding). This has led to a
decomposition algorithm that focuses on minimal links rather than minimal partitions.

Finally, work on formalizing and reasoning with context (e.g., [30]) can be related
to partition-based logical reasoning by viewing the contextual theories as interacting
sets of theories. Unfortunately, to introduce explicit contexts, a language that is more
expressive than FOL is needed. Consequently, a number of researchers have focused on
context for propositional logic, while much of the reasoning work has focused on proof
checking (e.g., GETFOL [23]). There have been few reported successes with automated
reasoning; [9] presents one example.

6 Conclusions

We have shown that structured logical theories can be reformulated into partitioned log-
ical theories such that reasoning over those partitions has computational advantages for
theorem provers and SAT solvers. Theorem proving strategies, such as resolution, can
use such decompositions to constrain search. Partition-based reasoning will improve
the efficiency of propositional SAT solvers if the theory is decomposable into partitions
that share only small numbers of symbols. We have provided sound and complete algo-
rithms for reasoning with partitions of related logical axioms, both in propositional and
FOL. Further, we analyzed the effect of partition-based logical reasoning on resolution-
based inference, both with respect to proof search space size, and with respect to the
length of a proof. We also analyzed the performance of our SAT algorithm and showed
that it takes time proportional to SAT solutions on individual partitions and an expo-
nent in the size of the links between partitions. Both algorithms can gain further time
efficiency through parallel processing.

Guided by the analysis of our SAT algorithm, we suggested guidelines for achieving
a good partitioning and proposed an algorithm for the automatic decomposition of the-
ories that tries to minimize identified parameters. This algorithm generalizes previous
algorithms used to decompose CSPs by finding single-vertex separators.
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1 Introduction

In recent years, researchers in statistics and the UAI community have developed
an impressive body of theory and algorithmic machinery for learning Bayesian
networks from data. Learned Bayesian networks can be used for pattern discov-
ery, prediction, diagnosis, and density estimation tasks. Early pioneering work in
this area includes [5, 9, 10, 13]. The algorithm that has emerged as the current
most popular approach is a simple greedy hill-climbing algorithm that searches
the space of candidate structures, guided by a network scoring function (either
Bayesian or Minimum Description Length (MDL)-based). The search begins
with an initial candidate network (typically the empty network, which has no
edges), and then considers making small local changes such as adding, deleting,
or reversing an edge in the network.

Within the context of Bayesian network learning, researchers have examined
how to use background knowledge about the network structure [8, 14] to guide
search. The most commonly used form of background knowledge is information
about variable ordering, which is often inferred from temporal information about
the domain, and translates into constraints on edge directions. Other types of
background knowledge include constraints on edge existence and constraints on
whether a node must be a root or may have parents.

Researchers have also examined the task of discretizing variable values in
Bayesian network learning [6, 11, 15]. The objective is to find an appropriate
discretization of a continuous variable, or an appropriate partitioning for an
ordinal variable, that will lead to a higher-scoring network (which one hopes, in
turn, will translate into improved generalization performance).

Another line of research has investigated how constraints on local probabil-
ity models within the Bayesian network can be represented using either decision
trees [2, 7] or decision graphs [4]. These approaches provide a compact represen-
tation for the conditional probability table (CPT) that is associated with each
node in the network. One way to view these methods is that they partition a
CPT into contexts in which the conditional probabilities are equal.
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In this abstract, we describe an approach that draws from the above three
lines of research. We examine the use of background knowledge in the form of
feature hierarchies during Bayesian network learning. Feature hierarchies en-
able us to aggregate categorical variables in meaningful ways. This allows us to
choose an appropriate “discretization” for a categorical variable. In addition, by
choosing the appropriate level of abstraction for the parent of a node, we also
support compact representations for the local probability models, thus encoding
constraints on the contexts in which conditional probabilities are equal.

Our hypothesis is that using feature hierarchies will enable us to learn net-
works that have better generalization performance, because we can learn a net-
work where each parent node is at the appropriate level of abstraction, and can
in fact be at different levels of abstraction in different contexts. The resulting
networks are more compact, require fewer parameters, and capture the structure
of the data more effectively.

We begin with a brief overview of Bayesian networks. We then describe
Abstraction-Based Search (ABS), a Bayesian network learning algorithm we
have developed that makes use of feature hierarchies, and present preliminary
experimental results in several domains.

2 Bayesian Networks

Bayesian networks [12] are a compact representation of a joint distribution over
a set of random variables,X1, . . . , Xn. Bayesian networks utilize a structure that
exploits conditional independences among variables, thereby taking advantage
of the “locality” of probabilistic influences. The first component is a directed
acyclic graph whose nodes correspond to the random variables X1, . . . , Xn, and
whose links denote direct dependency of a variable Xi on its parents Pa(Xi).
Given the graph component, the second component describes the quantitative
relationship between the node and its parents as a conditional probability table
(CPT), which specifies the distribution over the values of Xi for each possible
assignment of values to the variables in Pa(Xi). The conditional independence
assumptions associated with the dependency graph, together with the CPTs
associated with the nodes, uniquely determine a joint probability distribution
over the random variables.

The problem of learning a Bayesian network from a data set can be stated
as follows. Given a training set D of independent instances, find a network that
best matches D. The common approach is to introduce a statistically motivated
scoring function that evaluates how well the network matches the training data,
and to search for the optimal network according to the score. A widely used
scoring function is the Bayesian score [5, 9]:

P (BS |D) ∝ P (D|BS)P (BS)

Given complete data, and making certain assumptions about the process that
generates the data and the form of the priors for the CPT entries, it is possible
to derive a closed-form solution for the score of a candidate structure BS :
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P (BS)
∏

i

∏
pa(Xi)

Γ (αpa(Xi))
Γ (Npa(Xi) + αpa(Xi))

∏
xi

Γ (Nxi,pa(Xi) + αxi,pa(Xi))
Γ (αxi,pa(Xi))

where pa(Xi) are possible instantiations for the parents of Xi, the α values
characterize our prior information about each parameter in the network, and N
are the counts in the data D for a particular instantiation of the variables. There
are a number of possible choices for the network prior for P (BS), but a typical
requirement is that it can be factored into products of functions that depend
only on a node and its parents. Common choices include a uniform prior and
a prior that favors networks with fewer parameters. For further details about
scoring functions, [8] and [9] are excellent resources.

The problem of finding a network that optimizes this score is NP-hard [3], so
we resort to heuristic search. Surprisingly, a simple greedy hill-climbing search is
often quite effective. The search algorithm has local operators Add(X, Y), which
adds X as a parent of Y , Delete(X, Y), which deletes X from the parents of Y
and Reverse(X, Y), which reverses an edge from X to Y , making Y a parent of X .
When there are no missing values in the data, the scoring function decomposes
locally, so that when one of these operators is applied, only the score at the node
whose parents have changed needs to be recomputed. Exploiting this property
allows the scores of alternate structures to be computed efficiently.

Fig. 1. A Bayesian network for the census domain. The shaded nodes have fea-
ture value hierarchies.

Figure 1 shows a Bayesian network for a census domain. Part of the CPT for
Occupation is shown in Table 1. Each row in the CPT corresponds to a potential
instantiation of the parents, in this case Education and Sex. A given entry in the
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Table 1. CPT for Occupation in the Bayesian network of Figure 1

Occupation

Education, Sex Craft/ ... Exec/ Prof. ... Protective Armed
repair mgr. specialty services forces

Preschool, Female 0.06 ... 0.06 0.06 ... 0.06 0.06
Preschool, Male 0.082 ... 0.034 0.034 ... 0.034 0.034
1st 4th, Female 0.03 ... 0.03 0.11 ... 0.03 0.03
1st 4th, Male 0.25 ... 0.017 0.017 ... 0.017 0.017
...
Masters, Female 0.01 ... 0.19 0.65 ... 0.0042 0.0042
Masters, Male 0.0025 ... 0.32 0.43 ... 0.02 0.0018
Doctorate, Female 0.054 ... 0.085 0.55 ... 0.022 0.022
Doctorate, Male 0.017 ... 0.14 0.73 ... 0.0073 0.0073

CPT specifies the probability that Occupation takes on the value corresponding
to that column, given the values for Education and Sex associated with that row.
The full CPT has 32 rows (16 education levels and two values for Sex ) and 14
columns (occupation categories), resulting in a total of 448 table entries. Since
each of these parameters must be separately estimated by the learning algorithm,
it is apparent that using abstraction to compress the size of the CPT may result
in better parameter estimation, thus improving learning performance.

3 Learning Bayesian Networks Using Feature Hierarchies

We describe how to extend existing methods for learning Bayesian networks to
make use of background knowledge in the form of feature hierarchies. We begin
by discussing feature hierarchies in more detail and then describe the learning
algorithm.

3.1 Feature Hierarchies

A feature hierarchy defines an IS-A hierarchy for a categorical feature value. The
leaves of the feature hierarchy describe base-level values—these are the values
that occur in the training set.1 The interior nodes describe abstractions of the
base-level values. The intent is that the feature hierarchy is designed to define
useful and meaningful abstractions in a particular domain.

Figure 2(a) shows a feature hierarchy for Workclass in the census domain,
which describes an individual’s employer type. At the root, all workclass types
are grouped together. Below this are three abstract workclass values—Self-emp,
Government, and Unpaid—and one base-level value, Private. Each of the ab-
stract values is further subdivided into the lowest-level values that appear in the
1 This is not a strict requirement: with appropriate additional assumptions, we can

allow training instances that are described at abstract levels, although we do not
investigate this possibility here.
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Self_emp

Workclass

Federal

Gov

Not_incorp Incorp Local State

Private

Without_pay Never_worked

Unpaid Self_emp

Workclass

Federal

Gov

Not_incorp Incorp Local State

Private

Without_pay Never_worked

Unpaid

(a) Feature value hierarchy (b) Abstraction levels

Fig. 2. (a) Workclass feature hierarchy (b) Legal (solid) and illegal (dotted)
abstraction levels

raw data. As shown by this example, a feature hierarchy need not be balanced
(i.e., path length from leaf nodes to the root can vary), and the branching factor
(number of children) can vary from one node to another.

A cut through the tree defines an abstraction level, which is equivalent to a
mutually exclusive and disjoint set of abstract feature values. Figure 2(b) shows
three different abstraction levels for Workclass. Each abstraction level contains
the set of nodes immediately above the cut line. The solid lines correspond to
legal abstraction levels. The upper abstraction level includes the values Self-emp,
Gov, Private, and Unpaid. The lower abstraction level includes the values Not-
incorp, Incorp, Federal, Local, State, Private, and Unpaid. In this case, the lower
abstraction level makes more distinctions than the upper abstraction level. The
dotted line corresponds to an illegal abstraction level: it includes both Gov and
Local, which are not mutually exclusive.

The feature hierarchy helps to bias our search over appropriate abstractions
for a categorical variable. Without the hierarchy to guide us, we would need
to consider arbitrary subsets of the base-level values for abstractions. Here, the
feature hierarchy tells us which combinations of the values are meaningful (and,
hopefully, useful in density estimation).

3.2 Learning Algorithm

There are two key tasks to be performed when learning a probabilistic model:
scoring a candidate model and searching the space of possible models. It is
straightforward to extend the scoring functions for nodes modeled at different
levels of abstraction. For example, for the score described earlier, we simply
marginalize over the appropriate base-level values to compute N , the counts in
the data, and α, the prior, for the abstract values of a given variable.

ABS extends the standard search over network structures as follows. When an
edge is added to the network, the parent is added at its most abstract level. For
example, ifWorkclass is chosen as a parent, the initial abstraction level would be
{Self-emp, Gov, Private, Unpaid} (the upper abstraction level in Figure 2(b)).

ABS extends the standard set of BN search operators—edge addition, edge
deletion, and edge reversal—with two new operators that can refine an edge or
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abstract an edge. The search process is a greedy search algorithm that repeat-
edly applies these five operators to the current network, evaluates the resulting
network using the Bayesian score, and replaces the current network with the new
one if the latter outscores the former.

The new operators are Refine(X, Y, i) and Abstract(X, Y, i). If X is the parent
of Y , and its current abstraction level is {v1, . . . , vk}, Refine(X, Y, i) refines the
ith value of the abstraction, vi, by replacing vi with the set of values of its
children in the feature hierarchy. During the search process, ABS attempts to
apply Refine to each value of each abstraction in the current network. Refine only
succeeds if the value it is applied to is an abstract value (i.e., if the value has
children in the feature hierarchy).

Similarly, if X is the parent of Y , and its current abstraction level is {v1, . . . ,
vk}, Abstract(X, Y, i) abstracts vi by replacing vi and its siblings with the value
of their parent in the feature hierarchy. Again, during search, ABS attempts to
apply Abstract to each value of each abstraction level. Abstract only succeeds
if the parent value is below the root node of the feature hierarchy and all of
the value’s siblings appear in the abstraction level. For example, in the lower
abstraction level shown in Figure 2(b), neither condition is satisfied for the value
Unpaid: its parent value is the root node of the hierarchy, and Unpaid’s siblings
Self-emp and Gov do not appear in the abstraction level.

Several examples of legal applications of Abstract and Refine are given in
Table 2. The boldface values are those that are changed by the operation.

Table 2. Examples of Abstract and Refine operators

Initial abstraction level Operation Final abstraction level

{Self-emp, Gov, Private,
Unpaid}

Refine
(Workclass, Y, 1)

{Not-incorp, Incorp, Gov,
Private, Unpaid}

{Not-incorp, Incorp, Gov,
Private, Unpaid}

Refine
(Workclass, Y, 3)

{Not-incorp, Incorp, Federal,
Local, State, Private, Un-
paid}

{Not-incorp, Incorp, Fed-
eral, Local, State, Private,
Unpaid}

Abstract
(Workclass, Y, 1)

{Self-emp, Federal, Local,
State, Private, Unpaid}

4 Results

In this section, we describe initial results on three domains: a synthetic Bayesian
network (Synthetic) and two real-world domains, U.S. census data (Census) and
tuberculosis patient data (TB). We present results for ABS and for FLAT, a
learning algorithm that does not use the feature hierarchies.
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4.1 Test Domains

The synthetic network has 20 random variables, each with a domain consisting
of four discrete values. Five of the variables have feature hierarchies associated
with them, each of which structures the four values for the node into a 3-level
binary hierarchy. The CPTs for each node were filled in randomly, using the
middle level of the hierarchy (i.e., the two aggregated values) for each of the
hierarchical nodes. We then generated a training set and a test set from the
network. Because we have the original network as a “gold standard,” we can
measure the distance from the learned network to the true network, as well as
evaluating the score of the learned network and its performance on the test set.

For the second set of experiments, we used the census domain described in
Section 2. There are feature hierarchies for seven of the nominal variables: work
category, education, marital status, occupation, relationship, race, and native
country. (These nodes are shaded in Figure 1.) Figure 3 shows the feature hi-
erarchy for Education, which includes 16 values in the raw data, ranging from
Preschool through Doctorate. There are three abstract values: No-HS (grouping
all levels below high school graduate), Post-HS (high school degree or more, but
no college degree), and Post-College (graduate degree).

For our third set of experiments, we used a database of epidemiological data
for 1300 San Franciscan tuberculosis (TB) patients [1]. There are 12 variables
in this dataset, including patient’s age, gender, ethnicity, place of birth, and
medical history (HIV status, disease site, X-ray result, etc.). We constructed
feature hierarchies for two of the variables: place of birth and ethnicity.

4.2 Experiments

Table 3 shows results for each of these three domains. The column labelled
“Network Score” shows the scores of the networks learned in each domain by
the ABS and FLAT algorithms. The results are for a set of 100 runs in each
domain. In each case, we see that the mean score of the network learned by ABS
is slightly better than that of the FLAT network. While the difference in score
is not large, it is statistically significant at well over the 99% confidence interval
range.

While we are interested in finding higher-scoring networks, we are more inter-
ested in improved performance on unseen data. This tests whether using feature
abstractions results in improved generalization performance. The column la-
belled “Log-Likelihood of Test Set” shows the mean log-likelihood of the test set
for each domain for both FLAT and ABS for 100 runs. For each of the domains,
the likelihood of the test set according to the network learned by ABS is better
than for the FLAT network. Again, these results are statistically significant with
over 99% confidence.

As we mentioned earlier, for the synthetic domain, we can also compute
the KL-distance from the learned networks to the gold-standard network. For a
training set of size 10,000, the distance for FLAT is 0.38 while the distance for
ABS is much better at 0.28.
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Table 3. Log-likelihood of test sets and scores for ABS and FLAT on three
domains: Census, TB and Synthetic. In all cases, ABS outperforms FLAT at
confidence intervals over 99%.

Log-Likelihood of Test Set Network Score
ABS FLAT ABS FLAT

Domain Train Test Mean Std Mean Std CI Mean Std Mean Std CI

Census 10000 5000 -9.85 0.064 -9.86 0.065 99% -9.59 0.047 -9.59 0.047 99%
Census 15000 5000 -9.33 0.057 -9.34 0.057 99% -8.58 0.037 -8.59 0.036 99%
Census 20000 5000 -8.38 0.064 -8.41 0.063 99% -7.61 0.029 -7.62 0.030 99%
Census 25000 5000 -5.72 0.05 -5.74 0.05 99% -6.66 0.027 -6.67 0.027 99%

TB 1000 200 -5.09 0.22 -5.10 0.22 99% -5.49 0.10 -5.54 0.10 99%
Synthetic 1000 500 -23.71 0.20 -23.85 0.20 99% -23.51 0.19 -23.76 0.19 99%

4.3 Characteristics of Learned Networks

It is interesting to examine more carefully the differences between the learned
networks. Figure 1 shows a Bayesian network learned in the census domain
using FLAT while Figure 3 shows a Bayesian network learned using ABS. The
shaded nodes in Figure 3 indicate the variables that have parents that have been
abstracted.

Particularly for the variables with large domain sizes (such as Native-country,
Occupation, and Education), ABS is successful in finding abstraction levels that
reduce the size of the CPT. In this network, the abstraction level for Education
in the CPT for the edge from Education to Native-country includes only four
values rather than 16. The resulting abstraction level is shown in the lower right
of Figure 3. Similarly, for the edge from Occupation to Education, the abstraction
level for Occupation includes five values rather than the 14 base-level values.

The effect of this CPT compression is that edges are often added into the
network that are not added by the FLAT algorithm. One way to view this is
that we can make better use of our parameter resources, capturing only relevant
data dependencies for each parent, by modeling them at the appropriate level of
abstraction. Because we are not “wasting” parameters by modeling unnecessary
distinctions, we can model more dependencies, more effectively, with the same
amount of data. The final network in the FLAT case contains 19 links, whereas
the final network learned by ABS contains 23 links. Although the ABS graph
structure is significantly more complex, the CPTs are compressed and there-
fore contain only one-third more parameters (2032 parameters) than the FLAT
network (1542 parameters). If the ABS network were represented without any
compression, it would contain 4107 parameters. Thus, in this case, abstraction
yields a “parameter savings” of over 50%.
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Preschool MastersAssoc_vocHS_grad12th Doctorate

Education

No_HS Post_HS Bachelors Post_College

... ...

Fig. 3. A Bayesian network learned by ABS for the census domain. The shaded
nodes have parents that have been abstracted. The abstraction level for Educa-
tion is also shown.

5 Related Work

ABS can be thought of as a way to aggregate nominal variables. Many researchers
have explored the problem of discretizing continuous variables, and aspects of
this research are relevant to our approach. Friedman and Goldszmidt [6] present
a Minimum Description Length (MDL)-based approach for discretizing variables
during Bayesian network learning. Monti and Cooper [11] use a latent variable
model to perform multivariate discretization. Wellman and Liu [15] describe a
statistical approach for creating abstract variable values by combining neighbor-
ing values of ordinal variables in a Bayesian network—essentially discretization
via aggregation for integer-valued variables.

Tree-Structured CPTs (TCPTs) and other representations for CPTs that
take advantage of local regularities within the probabilistic model provide a
compact representation of the local probability models and, when used during
learning, can result in higher-scoring networks [2, 4]. These approaches repre-
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sent context-specific independence (CSI), that is, independencies that hold when
certain variables take on certain values.

TCPTs represent the CPT as a decision tree. Each branch of the tree is
associated with a particular value assignment for one of the parent variables
of a node in a Bayesian network. Each leaf node therefore defines a context
represented by the variable assignments along the path from the root to that
leaf. The probability stored at the leaf node is the probability to be used for any
assignment of values that is consistent with that context.

TCPTs and ABS represent complementary approaches to the problem of
efficiently representing CPTs within a Bayesian network. TCPTs provide a rep-
resentation for describing CSI relationships. ABS, on the other hand, defines a
search space in which each point is an abstraction level that constrains the set
of possible CSI relationships. ABS could be combined with CSI by using the
feature-hierarchy-based search to identify appropriate tests within a TCPT.

6 Conclusions and Future Work

We have presented preliminary results which show that using feature hierarchies
during learning can result in better scoring networks that also have better gen-
eralization performance. While this is a useful extension to traditional Bayesian
network learning algorithms, it is not a particularly surprising result. Perhaps
more surprising is that while ABS always outperforms FLAT, the performance
improvement is not as large as we would expect. We are interested in further
improving performance by exploiting feature abstraction in other ways during
learning. In addition to the ABS approach for incorporating feature value hierar-
chies into Bayesian network structure learning, we have developed two methods
for parameter estimation using these hierarchies. One method uses statistical hi-
erarchical modeling methods to estimate the parameters in the CPT; the other
uses weight-based mixture modeling. We plan to compare these approaches to
the ABS approach to determine which method (or combination of methods)
works the best in practice.

We are also interested in comparing these feature-hierarchy-based approaches
with learning methods that create structured CPTs, such as TCPTs. ABS could
be combined with TCPTs by using the feature-hierarchy-based search to identify
appropriate tests within a TCPT.

Finally, if a feature value hierarchy is not available a priori, it would be pos-
sible to apply clustering techniques within the search algorithm to find appro-
priate sets of value groupings in the network. It would be interesting to develop
such clustering methods and compare their performance to the alternatives (flat
learning or ABS with a known feature value hierarchy).
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Abstract. In recent years, researchers have reformulated STRIPS plan-
ning problems as SAT problems or CSPs. In this paper, we discuss the
Constraint-Based Interval Planning (CBIP) paradigm, which can repre-
sent planning problems incorporating interval time and resources. We
describe how to reformulate mutual exclusion constraints for a CBIP-
based system, the Extendible Uniform Remote Operations Planner Ar-
chitecture (EUROPA). We show that reformulations involving dynamic
variable domains restrict the algorithms which can be used to solve the
resulting DCSP. We present an alternative formulation which does not
employ dynamic domains, and describe the relative merits of the different
reformulations.

1 Introduction

In recent years, researchers have investigated the reformulation of planning prob-
lems as constraint satisfaction problems (CSPs) in an attempt to use powerful
algorithms for constraint satisfaction to find plans more efficiently. Typically,
each CSP represents the problem of finding a plan with a fixed number of steps.
A solution to the CSP can be mapped back to a plan; if no solution exists,
the number of steps permitted in the plan is increased and a new CSP is gen-
erated. SATPlan [SK96] mapped planning problems in the STRIPS formalism
into Boolean Satisfiability (SAT) problems. Early versions required hand-crafted
translation of each planning domain in order to achieve good problem solving
performance; later, automated translation of arbitrary STRIPS domains into
SAT problems achieved good performance as well [ME97]. Graphplan [BF97]
works on STRIPS domains by creating a plan graph which represents the set of
propositions which can be achieved after a number of steps along with mutual

B.Y. Choueiry and T. Walsh (Eds.): SARA2000, LNAI 1864, pp. 271–280, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



272 Jeremy Frank, Ari K. Jónsson, and Paul Morris

exclusion relationships between propositions and actions. This structure is then
searched for a plan which achieves the goals from the initial condition. While
the original algorithm performed backward search, the plan graph can also be
transformed into a CSP which can be solved by any CSP algorithm [DK00].

A second growing trend in planning is the extension of planning systems to
reason about both time and resources. STRIPS is simply not expressive enough
to represent more realistic planning problems. This demand for increased sophis-
tication has led to the need for more powerful techniques to reason about time
and resources during planning. The scheduling community has used constraint
satisfaction techniques to perform this sort of reasoning. Coupled with the suc-
cesses achieved by reformulating STRIPS problems, this provides incentives to
consider reformulating more complex planning domains as CSPs.

There have been several efforts to create planners which reason about time
and resources, and many such planners employ an underlying constraint reason-
ing system to manage complex constraints during planning. These planners use
interval representations of time and often use constraint systems to manage tem-
poral and resource constraints; [SFJ00] refers to systems like these as Constraint-
Based Interval Planners (CBIPs). ZENO [Pen93] and Descartes [Jos96] are im-
portant examples of such planners; unfortunately, space limitations prohibit us
from doing more than mentioning these efforts. HSTS [Mus94] employs an inter-
val representation of time and permits arbitrary constraints on the parameters of
actions. Temporal constraints and parameter constraints are reformulated as a
DCSP. At each stage in planning, the DCSP is made arc consistent, and inconsis-
tencies result in pruning. HSTS also adds the notions of attributes and timelines.
An attribute is a subsystem or component of a planning domain; timelines repre-
sent sequences of actions or states on attributes. Attributes permit more intuitive
modeling of planning domains, and enable the enforcement of mutual exclusion.
Finally, HSTS employs a unique, uniform representation of states and actions.
The Remote Agent Planner (RAP) [JMM+00] employs the above mechanisms
as part of the control system for the Deep Space One spacecraft in May of 1999.
The Extendible Uniform Remote Operations Planner Architecture (EUROPA)
is the successor of RAP. An important goal of EUROPA is to support a wide
variety of search algorithms. EUROPA maps the entire planning problem into
a DCSP, providing explicit variables for subgoal decisions as well as conditional
subgoaling. In addition, due to the size and complexity of non-binary constraints
used in space applications, EUROPA uses procedural constraints [Jón97, JF00]
to represent the underlying DCSP.

Much of the reformulation of a CBIP-based planning problem as a DCSP
is straightforward. The temporal components in the plan can often be repre-
sented as a Simple Temporal Network [DMP91], and complex constraints such
as resource constraints can be implemented as procedural constraints [Jón97].
Disjunctions can be modeled directly by variables whose domains represent the
possible choices, as is done in EUROPA. However, the addition of mutual exclu-
sion complicates the task of reformulating CBIP domains. The obvious way of
enforcing the mutual exclusion constraints leads to a DCSP representation using
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dynamic variable domains. This representation makes reasoning about no-goods
quite difficult; since many important enhancements to search algorithms depend
on no-good reasoning, this is a serious drawback. In this paper we first describe
the CBIP paradigm and EUROPA, then describe how introducing mutual ex-
clusion leads to these complications. We then show how to represent mutual
exclusion constraints as a DCSP without dynamic domains. Finally, we discuss
the impact of this representation on algorithms to solve the resulting DCSP.

2 Constraint-Based Interval Planning

The Constraint-Based Interval Planning (CBIP) framework is based on an in-
terval representation of time. A predicate is a uniform representation of actions
and states, and an interval is the period during which a predicate holds. A token
is used to represent a predicate which holds during an interval. Each token is
defined by the start, end and duration of the interval it occurs, as well as other
parameters which further elaborate on the predicate. For instance, a thrust
predicate may have a parameter describing the thrust level, which can be either
low, medium or high. The planning domain is described by planning schemata
which specify, for each token, other tokens that must exist (e.g. pre and post
conditions), and how the tokens are related to each other. Figure 1 shows an
example of a planning schema. Schemata can specify conditional effects and
disjunctions of required tokens. For instance in Figure 1, a thrust interval can
be met by a short warmup period if the engine is already warm, or a longer
one if not. Variables representing the disjunctions are parameters of tokens, and
thus are DCSP variables. This is shown in Figure 1, as the value of the ?temp
variable indicates the duration of the warmup token which precedes the thrust
token. Planning schemata can also include constraints on the parameters of the

Thrust(?level,?fuel,?temp) :−

FUEL−LEVEL(?fuel,?duration,?level)

meets Idle()

Eq(?temp,WARM) −> met−by Warmup(5)

Eq(?temp,COLD) −> met−by Warmup(25)

Parameter 
Constraints

Disjunctive 
Constraints

Interval 
Constraints

Fig. 1. The planning schema for a thrust interval. This schema consists of four
components: the master token of the schema, constraints on the parameters of
the schema, a description of other tokens which must exist when the master
token is in the plan, and a disjunction of tokens which may exist when the
master token is in the plan.
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token. As shown in Figure 1, the thrust interval has a constraint relating the
thrust level, available fuel, and the duration.

EUROPA is a CBIP planning paradigm which continuously reformulates the
planning problem as a DCSP problem. This is done by mapping each partial
plan to a CSP. The temporal constraints form a Simple Temporal Network,
which can be efficiently solved [DMP91], while the rest of the constraints form
a general, non-binary CSP represented by procedural constraints [JF00]. Figure
2 shows a small partial plan and its induced CSP. Assignments of variables in
the CSP correspond either to the adding of new plan steps, or the assignment
of parameters of plan steps. As steps are added to or removed from the plan,
the CSP is updated to reflect the current partial plan. For example, in Figure
1, adding the thrust step to the plan requires adding several new variables and
constraints to the CSP. At any time, if the CSP is inconsistent, then the partial
plan it represents is invalid; if a solution is found to the CSP, then that solution
can be mapped back to a plan which solves the problem. The advantage of such
a representation is that any algorithm which solves DCSPs can be used to solve
the planning problem.

Warmup(rate) Thrust(Rate,Init−Fuel,End−Fuel)

W_start W_end

W_dur

T_start T_end

T_dur

T_end−fuelT_init_fuel

T_rateW_rate EQ

EQ

Meets

ADDEQ ADDEQ

FUELCONS

Fig. 2. A partial plan and its DCSP representation. The partial plan consists
of 2 tokens, shown at the top of the figure. The DCSP variables are in rounded
boxes. Edges between DCSP variables are labeled with the constraints on those
variables.

3 Timelines in EUROPA: Square Tokens and Round
Slots

EUROPA represents attributes of planning domains using timelines. Timelines
are ordered sequences of token equivalence classes, which represent how an at-
tribute changes during the course of a plan. This adds powerful constraints to
the planning problem, which make it possible to eliminate a large number of
candidate solutions. Also, the specification of planning domains is more natural
than in languages such as STRIPS. However, the planning domain must now
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specify which tokens can appear on which timeline; this requires a more sophis-
ticated domain model. The planner framework must also contain a mechanism
for enforcing mutual exclusions.

Adding an action to a plan requires inserting a token onto a timeline. A
slot is a legal place on a timeline where a token can be inserted. Tokens can
only be inserted into single slots; they can’t span multiple slots. Each token
equivalence class defines a full slot, and there is an empty slot between each pair
of sequential token equivalence classes. When a token is inserted into an empty
slot, new empty slots are created before and after the token. However, when
a token is inserted onto a full slot, no new slots are created. Instead, the start
timepoint and end timepoint of the new token are equated with the timepoints of
the tokens defining the slot, and all the parameters are equated to the parameters
of the tokens on the slot.

Timelines enforce mutual exclusion among tokens with different predicates.
This models the notion of an attribute maintaining only one state at a time,
such as a unit resource which can only be used by a single task at once in a
scheduling problem. Timelines enforce a partial order among tokens; either a
token is strictly before or strictly after another token, or it occupies exactly the
same interval (or slot) as another token, which is another way of saying that
the two tokens specify the same action or state. This ensures that incompatible
actions are not permitted to overlap on the same timeline.

4 Representing Mutual Exclusion in EUROPA

The description of timelines leads to a natural representation of mutual exclu-
sion constraints in EUROPA. Each token insertion decision is represented by a
variable. The domain of this variable is the set of slots on a timeline. Notice,
however, that this domain is dynamic, as the set of available slots changes as
new tokens are inserted onto timelines. If search were guaranteed to proceed
chronologically, the search algorithm could simply store the previous domains
for the slots. However, EUROPA is designed to support many search algorithms,
including non-chronological algorithms. This means that timelines can change in
arbitrarily complex ways as the search for a plan proceeds. Identifying an arbi-
trary slot as one which occurred in a previous plan state would require saving all
intermediate plan states, as well as performing expensive matching operations.
This means that new labels for slots must be generated as timelines evolve.

While tokens can nominally be inserted into any slot on a timeline, in practice
there are usually very few options which do not immediately lead to a constraint
violation. For instance, some slots may be occupied by tokens with incompatible
predicates, while other slots may simply be too small (such as slots of zero
duration between adjacent tokens on a timeline). Lookahead mechanisms can
rapidly reduce the set of candidate slots. There are a number of possible ways
to implement this lookahead; checking predicates is inexpensive, while checking
temporal constraints and parameter constraints is more expensive.
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warmup(cold) thrust(low,4) thrust(low,3) turn(earth,ast−1)thrust(?x,?y)

[4,6]

[0] [15,16] [19,20] [21,22] [24,25] [30,33][1,4] [21]

Fig. 3. Checking for suitable slots. The free thrust token at the left of the
figure has a duration of between 4 and 6, and its start and end times are also
given. Simple lookahead can eliminate all candidate slots except slot 2. Note
that slots of zero duration between adjacent tokens are not represented in this
figure.

Figure 3 shows an example of how lookahead can be done. In this example, the
thrust token has a duration of between 4 and 6. Simply by checking the predicate
names, a lookahead mechanism can eliminate slots 1 and 5. If the mechanism
checks the legal start and end times for the token, slot 4 is eliminated, because
the token must end before slot 4 begins. If the mechanism checks the duration
of slot 3, it would find it was too short, having a maximum duration of 3. This
leaves slots 2 as the only candidate.

This representation has some subtle but important ramifications for sophis-
ticated CSP algorithms. Consider, for example, powerful no-good learning tech-
niques employed by algorithms such as Dynamic Backtracking [Gin93], RelSat
[BM96], and Tabu search [Glo89]. A no-good is simply a combination of vari-
able assignments which cannot be part of a solution. No-goods containing values
from dynamic domains are, unfortunately, “no good” when the value changes
during search. To see why, consider a no-good containing a token insertion onto
an empty slot. The value representing the empty slot will be eliminated from the
domain of the token insertion variable and replaced with new values represent-
ing the new slots. Even should the token be removed later, the domain of this
variable will be updated with new values, because of the expense of inferring
that the labels should be identical. Since the domain can change many times as
a succession of different tokens are inserted into the empty slot, no-goods using
the empty slot value may not be usable, because they will not match the current
context if the value in the no-good has been replaced.

5 The Ordering Decision Representation

In this section we propose a mutual exclusion representation which uses boolean
variables to represent decisions about the order of tokens on a timeline. Recall
that timelines are an ordered list of token equivalence classes which define the
slots. In effect, the slots are a consequence of committing to one of the possible
orderings of the tokens. As we saw above, these slots are mutable, and thus
representations which depend explicitly on the identity of the slots will suffer
from the problems with dynamic domains. A representation based on ordering
decisions among tokens on the same timeline does not have this problem. As new
tokens are added, new variables are added, but their domains are not dynamic.
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We now describe the new representation in detail. When a new token A is
introduced, we create 3 boolean variables describing the relationship between
this token and each other token B: Bef(A, B), Aft(A, B), and Eq(A, B). We
must also create a number of conditional constraints which relate a boolean or-
dering variable and timepoint variables for A and B. These constraints permit
information about the boolean ordering variables to affect the possible values of
the timepoints, and vice-versa. For instance, if (Bef(A, B) = T ), the conditional
constraint would enforce (eA ≤ sB). Similarly, if (eA > sB), the conditional con-
straint would enforce (Bef(A, B) �= T ). To see how the representation using
conditional constraints works, let sA, sB be the start timepoints of tokens A, B
respectively, and eA, eB be the end timepoints of tokens A, B respectively. To en-
force the total ordering of A and B, we use the following conditional constraints:

(Bef(A, B) = T )⇒ (eA ≤ sB)

(Aft(A, B) = T )⇒ (eB ≤ sA)

The case for Eq(A, B) = T is a bit more complex. Recall that tokens have
parameter variables as well as temporal variables; let ai be the ith parameter
of A and bi be the ith parameter of B respectively. Then we have the following
constraints:

(Eq(A, B) = T )⇒ (sA = sB)

(Eq(A, B) = T )⇒ (eA = eB)

(Eq(A, B) = T )⇒ ∀i(ai = bi)

Recall that we pose these constraints between every pair of tokens on the same
timeline.

We can exploit the fact that only one of Bef(A, B), Aft(A, B) and Eq(A, B)
can be true for any pair of tokens A and B, and post an additional XOR con-
straint between these three variables. Recall that some tokens have incompatible
predicates. Such tokens must be totally ordered on a timeline; for these pairs, we
post the unary constraint Eq(A, B) = F . Figure 4 shows the new representation.

If we recall the lookahead mechanism described in the previous section, we see
that most of the lookahead operations are now subsumed by arc consistency. For
example, incompatible predicates are handled by the unary constraints posted
on the Eq(A, B) variables. If a slot is too early or too late, then the conditional
constraints will propagate that information to the boolean variables. The con-
ditional constraints on the Eq(A, B) variable will also result in propagation to
eliminate full slot insertions which would cause constraint violations. The only
lookahead check which is not immediately handled by propagation is the check
on the duration of empty slots. The reason is that there are no constraints in the
new formulation which mimic the duration constraints on slots. While these con-
straints could be posted, this would require inferring the location of the empty
slots from the current order of tokens, which might be costly.

There are other ways to use variables and constraints to represent the mutual
exclusion relationship, for instance using fewer variables. However, these repre-
sentations lead to less intuitive, higher arity constraints. The representation we
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Fig. 4. Order variables and constraints for two tokens. Variables are represented
by ovals, constraints are represented by labeled hyper-arcs.

have chosen to discuss here has two advantages: it is relatively simple to explain,
and the conditional constraints are general procedural constraints which fit well
with the procedural constraint framework used in EUROPA.

For timelines with N tokens, there are N(N−1)
2 pairs of tokens, and each

pair can be ordered 3 different ways. As such, the induced search space is
3

N(N−1)
2 . However, most of these possibilities are invalid, and can be elimi-

nated after little search. For instance, if token A occurs before B and B oc-
curs before C, then attempting to order A after C will quickly result in a
temporal constraint violation. We can add optional constraints among the log-
ical variables representing the ordering decisions to enable propagation which
makes this search unnecessary. Consider the logical variables for tokens A, B
and C. There are 13 possible arrangements of the tokens; either they are to-
tally ordered (6 possibilities), 2 are equal and one comes either before or af-
terwards (6 possibilities), or all 3 are equated. We can post constraints like
Aft(A, B)∧Aft(B, C)⇒ Aft(A, C) to enforce the conditions on total ordering
of the tokens, Eq(A, B)a ∧ Aft(B, C) ⇒ Aft(A, C) to enforce conditions on
partial ordering of the tokens, and Eq(A, B) ∧Eq(B, C)⇒ Eq(A, C) to enforce
the conditions on all three equal. There are 13 total constraints; each time a new
token is created for a timeline, we must add 13N(N−1)

2 logical constraints on the
new logical variables.

6 Comparing Representation

The original representation requires only a single variable to represent a token
insertion decision. However, the domain for this variable is dynamic, and as we
have seen, a special lookahead mechanism is necessary to reduce the domain. A
label maintenance mechanism is also needed to update the names of elements
of the domain as timelines evolve. Finally, this representation makes no-good
reasoning difficult, beacuse many no-goods discovered during search may use
values which are eliminated from the domain during search. These no-goods



On Reformulating Planning as Dynamic Constraint Satisfaction 279

may not be used to best effect during search; the effort to collect these no-goods
and match them to the current state is wasted overhead.

To assess the ordering representation, consider a timeline with N tokens
inserted on it. The ordering variable representation requires 3N(N−1)

2 logical
variables, N XOR constraints, and 2N(N − 1) conditional constraints on the
timepoints and the logical variables. In addition, for each pair of tokens with
identical predicates and p parameters, there are p conditional constraints be-
tween the parameter variables and the boolean variables representing the deci-
sion that two tokens have been equated. If the optional logical constraints are
added, the contribution is 13N(N−1)(N−2)

6 logical constraints. The main advan-
tage of the ordering variable representation is that the mutual exclusion can
be represented without using dynamic domains, so there are no problems with
using algorithms such as Dynamic Backtracking or Tabu search. The increased
search space is offset by the observation that constraint propagation limits the
options for the ordering variables, so we expect to do roughly the same amount
of search in the new representation.

One disadvantage of the new representation is that heuristic enforcement
is more complicated. Natural heuristics for token insertion decisions are value-
orderings, based on properties of slots such as relative order on the timeline, and
whether the slot is full or empty. Since slots are no longer values of token insertion
variables, this approach will not work. Enforcing these heuristics now requires
dynamically ordering the boolean variables. For instance, to enforce a heuristic
like “insert the token on full slots first” would mean specifying that the priority of
assigning the Eq(A, B) variables is higher than the priority of assigning the other
boolean variables. Enforcing the heuristic “insert tokens onto the earliest slots
first” would require determining which boolean variables correspond to decisions
for tokens appearing earlier in the timeline, and giving priority to these variables.

7 Discussion and Future Work

Representing mutual exclusion constraints is an important component of the
EUROPA reformulation of planning as constraint satisfaction. However, mutual
exclusion reasoning complicates the automatic reformulation of planning do-
mains into DCSPs. We have discussed two representations which manage mutual
exclusion reasoning, and discussed some of the tradeoffs between these represen-
tations. Explicitly representing slots is intuitive, but results in a DCSP represen-
tation with dynamic domains, which leads to problems in using powerful CSP
techniques such as no-good reasoning. Leveraging the power of existing CSP
algorithms is a promising approach to solving planning algorithms. Our work
is aimed at providing a representation which makes powerful no-good reason-
ing approaches feasible. We have presented an alternative representation which
avoids the pitfalls of dynamic slot domains, but is more complex both in terms
of the constraint network and in the enforcement of heuristics. It is premature
to conclude that one approach is strictly superior to another.

The slot representation is one of the only instances of DCSPs employing dy-
namic domains we are aware of in the literature. Most such work only discusses
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adding and removing constraints among the same set of variables. Our observa-
tions concerning the pitfalls of no-good reasoning with the dynamic domain rep-
resentation may be a manifestation of a deeper problem with dynamic domains,
especially when values in these domains change over time. This phenomenon
should be investigated more closely, and should it prove to be a pervasive prob-
lem, it will become important to consider ways of representing these problems
without employing dynamic domains.

We would like to thank the anonymous reviewers for their comments.
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Abstract. A memory-based heuristic is a function, h(s), stored in the
form of a lookup table: h(s) is computed by mapping s to an index and
then retrieving the corresponding entry in the table. In this paper we
present a notation for describing state spaces, PSVN, and a method for
automatically creating memory-based heuristics for a state space by ab-
stracting its PSVN description. Two investigations of these automatically
generated heuristics are presented. First, thousands of automatically gen-
erated heuristics are used to experimentally investigate the conjecture by
Korf [4] that m·t is a constant, where m is the size of a heuristic’s lookup
table and t is the number of nodes expanded when the heuristic is used
to guide search. Second, a similar large-scale experiment is used to verify
that the Korf and Reid’s complexity analysis [5] can be used to rapidly
and reliably choose the best among a given set of heuristics.

1 Introduction

In this paper we describe a method for automatically creating heuristics from
a description of a search space. The aim of this research is twofold. On the
practical side, it is often difficult to generate good, provably admissible heuristics
for a new search space. Our method is fully automatic and is guaranteed to
generate monotone heuristics. On the scientific side, our method enables large-
scale experiments to study properties of heuristics. For this purpose it is essential
to create not just one heuristic for a search space, but many different ones whose
properties can be controlled more or less directly by the experimenter. In this
way general hypotheses about heuristics can be investigated experimentally.

Our general approach to automatically creating heuristics is to alter the descrip-
tion of the given search space, S, to create a description of a “simpler” search
space, S′, in such a way that (1) for every state in S, there is a corresponding
state in S′, and (2) the distance between any two states in S, is greater than
or equal to the distance between the corresponding states in S′. A space with
these two properties is called an abstraction of the original space [6]. Any ab-
straction of S gives rise to a monotone heuristic for searching in S: the distance
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between states s1 and s2 in S can be estimated by the exact distance between
the corresponding states in S′.

For the purposes of automatically generating a wide variety of heuristics from a
single search space description, and for having fine control over certain key fea-
tures of the heuristics, we have found it useful to devise our own representation
language, PSVN. To date we have studied one method of creating abstractions
in PSVN, which we call domain abstraction. PSVN with domain abstraction gen-
eralizes the notion of pattern database [1]. Once the abstract space is created,
the distance-to-goal for the entire abstract space is precomputed and stored in a
lookup table with one entry for each abstract state. A heuristic represented by
such a lookup table we call a memory-based heuristic.

The attraction of memory-based heuristics is that they enable search time to
be reduced by using more memory. Korf [4] conjectures that memory (m) and
time (t) can be directly traded off, i.e., that the product m · t is a constant. This
conjecture is important because if it is true search time can be halved simply by
doubling available memory. In section 4.1 we test this conjecture in a large-scale
experiment in which thousands of heuristics having a wide variety of memory
requirements are evaluated. In section 5, a similar large-scale experiment is used
to verify that the complexity analysis of search heuristics by Korf and Reid [5]
can be used to rapidly and reliably choose the best among a given set of memory-
based heuristics. Thus we can automatically generate a good heuristic for a novel
search space by randomly generating a large set of heuristics and using Korf and
Reid’s method to select the best among them.

2 State Space Representation

To facilitate the automatic generation of many different abstractions of widely
varying granularity, we use a simple vector notation for states and operators.
A state is represented by a fixed length vector of labels from a finite set L
called the domain. An operator is represented by a left-hand side (LHS) and
right-hand side (RHS), each a vector the same length as the state vectors. Each
position in the LHS and RHS vectors may be a constant (a label from L),
a variable, or an underscore ( ). The variables in an operator’s RHS must also
appear in its LHS. An operator is applicable to state s if its LHS can be unified
with s. The act of unification binds each variable in LHS to the label in the
corresponding position in s. Underscores in the LHS act as “don’t cares”. The
RHS describes the state that results from applying the operator to s. The RHS
constants and variables (now bound) specify particular labels and an underscore
in a RHS position indicates that the resulting state has the same value as s in
that position. For example,

< A,A, 1, , B, C >→< 2, , , , C,B >

is an operator that can be applied to any state whose first two positions have
the same value and whose third position contains 1. The effect of the operator
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is to set the first position to 2 and exchange the labels in the last two positions;
all other positions are unchanged.

A state space is defined by a triple S =< s0, O, L >, where s0 is a state, called
the seed state, O is a set of operators, and L is a finite set of labels. The state
space is the transitive closure of s0 and the operators, i.e., it consists of all
reachable states from s0 by any sequence of operators.

We call this notation PSVN (“production system vector notation”). Although
simple, it is expressive enough to specify succinctly all finite permutation groups
(e.g. Rubik’s Cube) and the common benchmark problems for heuristic search
and planning (e.g. sliding tile puzzles).

3 State Space Abstraction

A domain abstraction is a map φ : L → K, where L and K are sets of labels
and |K| ≤ |L|. A state space abstraction is induced by a domain abstraction by
applying φ to the seed state and the operators: S′ = φ(S) =< φ(s0), φ(O),K >.
The action of φ on an operator is to relabel the constants appearing in the
operator. The abstract state space is defined to be the transitive closure of φ(O)
and φ(s0) – the set of states reachable from φ(s0) by applying operators in φ(O).
This definition extends the notion of “pattern” in the pattern database work [1],
which in their framework is produced by mapping several of the labels in L to a
special new label (“don’t care”) and mapping the rest of the labels to themselves.

The key property of state space abstractions is that they are homomorphisms
and therefore the distance between two states in the original space, S, is always
greater than or equal to the distance between the corresponding abstract states
in φ(S). Thus, abstract distances are admissible heuristics for searching in S (in
fact they are monotone heuristics: for formal proofs of these assertions see [2]).

The heuristic defined by an abstraction can either be computed on demand, as
is done in Hierarchical A* [3], or, if the goal state is known in advance, the
abstract distance to the goal can be precomputed for all abstract states and
stored in a lookup table (pattern database) indexed by abstract states. In this
paper we take the latter approach. If all the operators in S are invertible, the
pattern database is constructed by an exhaustive breadth first traversal of S′

starting at the goal state, φ(g), and using the inverses of the operators. If some
operators are not invertible, the transpose of S′ is created by a depth first forward
traversal starting from φ(s0) and then the pattern database is constructed by
an exhaustive breadth first traversal of this explicit graph.

For special classes of search spaces a formula can be given relating an abstrac-
tion’s granularity to the memory needed for the corresponding memory-based
heuristic. But in general, the problem of estimating the size of the abstract
space is difficult. The main complication is that an abstract space can contain
an arbitrarily large number of states which have no pre-images. We call such an



284 István T. Hernádvölgyi and Robert C. Holte

abstraction non-surjective. For example, consider the 2 × 2 sliding-tile puzzle
and the domain abstraction φ1 : {0, 1, 2, 3} → {0, 1, 2} defined as:

φ1(x) =
{
0 if x = 3
x if x �= 3

This abstraction has two 0’s (blank tiles) as shown in Figure 1. It is non-surjective
because there are states in φ1(S) which have no pre-image in S. These states of
φ1(S) have dashed line boundaries in Figure 1.
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Fig. 1. φ1(S)

Non-surjective abstractions arise often in practice. All our attempts to represent
the Blocks World in PSVN have given rise to non-surjective homomorphisms [2].
We have identified two causes of non-surjectivity, orbits and blocks. These are
structural properties that naturally arise in problems in which the operators
move physical objects (e.g. the cubies in Rubik’s Cube) and there are constraints
on which positions an object can reach or on how the objects can move relative
to one another. We have also seen examples of other causes, but have not yet
been able to give a general characterization of them.

4 Korf’s Conjecture

A fundamental question about memory-based heuristics concerns the relation-
ship betweenm, the size of the pattern database for a heuristic, and t, the number
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of nodes generated when the heuristic is used to guide search. [4] gives an in-
sightful, but informal, analysis of this relationship which leads to the conjecture
that t ≈ n/m.

The aim of our first experiment is to examine the true relationship between t
and m and compare it with the relationship conjectured in [4]. Our approach
is to create abstractions with different values of m and problem instances with
different values of d and measure t by running A* (not IDA*) with each ab-
straction on each problem instance. This is repeated for different search spaces
to increase confidence in the generality of our conclusions. In these experiments
all the abstractions are surjective, since Korf’s conjecture is certainly false for
non-surjective abstractions.

For a given m there can be many different abstractions. 30 are generated at ran-
dom and their t values averaged. t is estimated separately for “hard”, “typical”,
and “easy” problem instances using 100 randomly selected start states of each
type (the goal state is fixed for each search space). The difficulty of a problem in-
stance is determined by how its solution length compares to the solution lengths
of all other problem instances. For example, we use the median of the solution
lengths to define a “typical” problem instance.

8-Puzzle 8-Perm Top-Spin

n 181440 40320 40320

min m 252 56 28

max m 30240 20160 10080

b 1.667 6 2

deasy 18 5 12

dtypical 22 7 16

dhard 27 9 19

Table 1. Experiment Parameters

Results are presented (figure 2) as plots with m on the x-axis and t on the
y-axis. Each data point represents the average of 3000 runs (30 abstractions,
each applied to 100 problem instances). Breadth-first search was also run on
all problem instances; it represents the extreme case when m = 1. In total,
our experiments involved solving 236,100 problem instances. In this extended
abstract we present only the results for the 8-puzzle.

We chose state spaces large enough to be interesting but small enough that such
a large-scale experiment was feasible. Table 1 gives the general characteristics
and experiment parameters for each space. Note that them values for each space
range from very small to a significant fraction of n. Each state space is generated
by a puzzle, which we now briefly describe.
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The 8-Puzzle is composed of 8 labeled sliding tiles arranged in a 3×3 grid. There
is one tile missing, so a neighboring tile can be slid into its place. In PSVN each
position in the vector corresponds to a particular grid position and the label
in vector[i] denotes the tile in the corresponding grid position. For example, if
vector position 1 corresponds to the upper left grid position, and vector position
2 corresponds to the upper middle grid position, the operator that exchanges a
tile in the upper left with an empty space (λ) in the upper middle is

< X,λ, , , , , , , >→< λ,X, , , , , , , >

In the N -Perm puzzle a state is a vector of length N containing N distinct labels
and there are N − 1 operators, numbered 2 to N , with operator k reversing the
order of the first k vector positions. We used N = 8. In PSVN operator 5, which
reverses the first 5 positions, is represented

< A,B,C,D,E, , , >→< E,D,C,B,A, , , >

The (N ,K)-Top-Spin puzzle has N tokens arranged in a ring. The tokens can
be shifted cyclically clockwise or counterclockwise. The ring of tokens intersects
a region K tokens in length which can be rotated to reverse the order of the
tokens currently in the region. We used N = 8 and K = 4, and three operators
to define the state space

< I, J,K,L,M,N,O, P >→< J,K,L,M,N,O, P, I >

< I, J,K,L,M,N,O, P >→< P, I, J,K,L,M,N,O >

< A,B,C,D, , , , > → < D,C,B,A, , , , >

4.1 Experimental Results

Figure 2 shows the experimental results for the 8-puzzle with m on the x-axis
and t on the y-axis. The scale on both axes is logarithmic but the axes are labeled
with the actual m and t values. With both scales logarithmic t ·m = constant
c, the conjecture in [4], would appear as a straight line with a slope of −1. Note
that the y-axis is drawn at m = 252, not at m = 0.

In Figure 2 a short horizontal line across each line (at around m = 4000) indi-
cates the performance of the Manhattan Distance on the 8-puzzle test problem
instances. This shows that randomly generated abstractions of quite small size
(5040 entries, less than 3% of the size of the state space) are as good as one of
the best hand-crafted heuristics known for the 8-puzzle. The best of these ran-
domly generated heuristics expands about 30% fewer nodes than the Manhattan
distance.

A linear trend is very clear in all the results curves. The correlation between the
data and the least squares regression line is 0.99 or higher in every case. However,
the slope is not−1. These results therefore strongly suggest that t·mα = constant
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Fig. 2. 8-Puzzle: Number of States Expanded [t] vs Size of Pattern Database
[m].

c for α between −0.57 and −0.8. α in this range means that doubling the amount
of memory reduces the number of nodes expanded by less than a factor of 2.

Despite the very high correlation with a straight line, it appears that the top
curves in each plot, and the middle curves to a lesser extent, are slightly bowed
up, i.e., that for problem instances with long solutions the effect on t of increasing
m depends on the value of m, with a greater reduction in t being achieved when
m is large. The reason for the flattening out of the curves as they approach
m = 1 is a decrease in the effective branching factor as A* expands more states.
A* caches all the states it generates. Search guided by a very small pattern
database will generate a significant portion of the search space, and the more
states generated the higher the chance that a freshly generated state is already
in the cache. If plotted the effective branching factor of the 8-puzzle is seen to
drop sharply as the size of the pattern database, m, decreases below 1000.

Figure 3 plots the average number of nodes expanded for every possible abstrac-
tion of the 8-puzzle in which the blank tile remains unique. The average is over
400 start states distance 22 from the goal state (a total of 1,392,400 problem
instances were solved). There are some very small pattern databases – one of size
9 and eight of size 72. It is clear from that plot that for the search space for start
states with distance 22 moves from the goal the linear trend continues along
the entire scale of pattern databases. The plot also shows an interesting phe-
nomenon: pattern databases of size 3024 slightly outperform pattern databases
of size 3780, hence the notch in the curve.

Figure 4 shows how the pattern databases for the 8-puzzle of all different sizes
perform on the same 400 start states. Clearly, the number of states expanded
generally decreases as the size of the pattern database increases. However it is
equally clear that there is significant overlap: the best heuristic with less memory
is often better than an average heuristic with slightly more memory. On the other
hand the range of variation for heuristics of the same size is not extremely large:



288 István T. Hernádvölgyi and Robert C. Holte

10

100

1000

10000

100000

1 10 100 1000 10000 100000

t

m

d=22

Fig. 3. 8-Puzzle – All Abstractions for d = 22: Number of States Expanded [t]
vs Size of Pattern Database [m]
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Fig. 4. Number of States Expanded by All Pattern Databases (y axis) vs.
Memory (x axis). The Legend is Sorted in Increasing Memory Order. (< a, b, ... >
indicates that the domain abstraction φ was created by randomly choosing a
many labels and assigning them the new label la, b many labels had new label
image lb ..., such that la �= lb �= .... The label representing the blank in all cases
remained unique.)
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the worst heuristic of any given size results in 2 to 4 times more nodes being
expanded than the best heuristic of the same size.

5 Predicting a Heuristic’s Performance

In [5] Korf and Reid develop a formula to predict the number of nodes generated,
t, as a function of parameters that can be easily estimated for memory-based
heuristics. Our reconstruction of their development, with some slight differences,
leads to an estimate of the number of nodes

t(b, d) =
d∑

i=0

biP̃ (d− i) (1)

where b is the space’s branching factor, d is the distance from the start state to
the goal state, and P̃ (x) is the percentage of the entries in the pattern database
that are less than or equal to x.

To verify how well equation 1 predicts the number of nodes expanded we have
run an extensive experiment with the 8-Puzzle. The average number of nodes
expanded for 400 start states (all distance 22 from the goal state) was measured
for all abstractions that keep the blank tile unique. Each point in Figure 5
represents the average number of states expanded on these start states for one
particular pattern database of size 5040. This actual number of states expanded
is the x axis, the y axis is the value predicted by equation 1. If equation 1
precisely predicted the number of nodes expanded, the points would lie on the
y = x line.
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Fig. 5. Number of States Expanded as Predicted by Equation 1 (y axis) vs. The
Average of the Actual Number of States Expanded (x axis). (m = 5040)
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For all sizes of heuristic the relation between the actual and predicted values
is an almost linear and certainly monotonic trend. Because of the monotonic
relation between equation 1 and the actual number of nodes expanded, equation
1 can be used to reliably determine which of two heuristics will result in fewer
nodes being expanded. The results shown here are when b and d are known
exactly, but we also have additional experiments showing the same trends when
b and d are estimated in a particular way.

6 Conclusion

In this paper we introduced a simple way of encoding problems, PSVN, in which
states are vectors over a finite domain of labels and operators are production
rules. By using PSVN domain abstractions are simple syntactic operations that
result in monotonic search heuristics. Thus heuristics can be generated automat-
ically from a state space’s PSVN description. We report large scale experiments
on moderate size search spaces to experimentally verify the relationship between
a heuristic’s memory and search effort and to predict the performance of pat-
tern databases from the estimated branching factor of the search tree and the
distribution of heuristic values in the pattern database.
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1. Introduction

Computational complexity is often a major obstacle to the application of AI tech-
niques to significant real-world problems. Efforts are then required to understand the
sources of this complexity, in order to tame it without introducing, if possible, too
strong simplifications that make either the problem or the technique useless.

It has been well known since the early times of AI that representation is a key issue
to facilitate solving a problem [1-5], even though there is clearly no hope of turning,
by a representation change, an intractable class of problems into a tractable one. How-
ever, computational characterization of problem classes is based on worst-case analy-
sis, and, hence, not every problem instance in the class is equally hard to solve [6].

On the other hand, recent investigations have uncovered a common structure, inside
classes of problems, characterizing the complexity of finding solutions. In fact, several
classes of computationally difficult problems, such as K-Satisfiability (K-SAT), Con-
straint Satisfaction (CSP), graph K-coloring, and the decision version of the Traveling
Salesperson problems show a phase transition with respect to some typical order
parameters, i.e., they present abrupt changes in the probability of being solvable, cou-
pled with a peak in computational complexity [7].

Even though most studies have so far dealt with artificially generated problems, the
presence of a phase transition has also been found in real-world problems [8, 9], sug-
gesting that the phenomenon may be relevant for practical applications. Investigation
of phase transitions provides information on the complexity of single problem in-
stances of a class. The phase transition, in fact, divides the problem space into three
regions: one (the NO region) in which the probability of the existence of a solution is
almost zero, and where it is �easy� to prove unsolvability; a second one (the YES
region) in which many alternative solutions exist, and where it is �easy� to find one;
finally, a third one (the "mushy" region [10]), where the solution probability changes
abruptly from almost 1 to almost 0, potentially making very difficult to find a solution
or to prove unsolvability.

The highest complexity for solving a problem instance occurs inside the mushy re-
gion. One may then wonder whether a representation change might move the location
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of a given problem instance from this region to either the YES or the NO one, where
the instance can be solved with lower complexity. This possibility, however, does not
change a NP-hard class of problems into a tractable one, as the class complexity still
scales up exponentially with problem size.

In this paper we are interested in the matching problem, i.e., satisfiability of a given
First Order Logic formula on a set of universes of interpretation. This problem, fun-
damental in any complex reasoning activity, is of particular relevance in learning. In
fact, when learning structured descriptions of concepts [11-13, 23], the learner
matches every generated hypothesis (in general a FOL formula) to all the training
examples (different universes), possibly solving several thousands of matching prob-
lems. It is then clear that a decreasing in the matching complexity may substantially
reduce the complexity of the whole process.

Unfortunately, previous work has shown that not only phase transitions do occur in
real-world learning problems, but also that current relational learners are bound to
search for hypotheses exactly inside the mushy region, severely questioning the scal-
ability of learning relations to non trivial problems [9, 14]. This paper explores an-
other potential line of attack to complexity reduction, namely the exploitation of ab-
straction to change both the examples and the hypothesis representation spaces. In this
way, matching problems in the abstract spaces might be easier to solve, though at the
expenses of completeness/soundness [15].

2. Matching Problem

The matching problems we consider are restricted to the satisfiability of existentially
quantified, conjunctive formulas, ∃  

" 
x  [ϕ(  

" 
x )], with n variables (from a set X) and m

literals (predicates from a set P or their negation). Given a universe U, consisting of a
set of relations (tables) containing the extensions of the atomic predicates, the consid-
ered formula is satisfiable if there exists at least one model of ϕ(  

" x ) in U. In the con-
text of learning relations, the formula ϕ represents a conjunctive hypothesis, and each
example E corresponds to a universe. The final concept description is usually a dis-
junction of such conjunctive formulas. A matching problem is a special case of a Con-
straint Satisfaction Problem [10, 16], where the relations in U correspond to the con-
straints.

Matching Problem Generation

In order to investigate the location and properties of phase transitions in matching,
formulas and examples have been generated according to a stochastic procedure that
simulates conditions similar to the ones occurring in real learning problems. The fol-
lowing assumptions have been adopted:

1. The variable x1, x2, ... , xn  range over the same set Λ of constants, containing
L elements.

2. All the predicates are binary.
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3. Every relation in U has the same cardinality, namely it contains exactly N tu-
ples (pairs of constants).

Given X and P, with the additional constraint m≥  n-1, a formula ϕ with the structure
below is generated, according to the random procedure described by Botta, Giordana
and Saitta [17]:

                             

  
ϕ(" x )= ∧

i =1

n−1
αi (x i,x i+1) ∧ ∧

i =n

m
α i(yi ,zi ) (1)

In (1), the variables {yi, zi} belong to X, and yi ≠ zi. The generated formulas contain
exactly n variables and m literals, and the same pair of variables may appear in more
than one predicate. The first part of formula (1) guarantees that the constraint graph is
connected, in order to hinder the matching problem from being reduced to simpler
subproblems, with disjoint sets of variables.

Every relation in U is built up by creating the Cartesian product Λ × Λ of all possi-
ble pairs of constants, and selecting N pairs from it, uniformly and without replace-
ment. In this way, the same pair cannot occur twice in the same relation.

Extensive analyses and experimentations of the effects of matching on learning re-
lations have been performed previously [14]. In this section we briefly summarize the
obtained results, in  order to make this paper self-consistent.

Phase Transition in the Matching Problem

Figure 1 presents the graph of the probability of solution, Psol, versus the number m of
predicates in the formula, and the number L of constants in the universe, for a number
of variable n = 10 and cardinality of the relations N = 100.

(a)                                                                                 (b)

Figure 1. (a) 3-Dimensional plot of the probability of solution Psol versus m and L, with n
= 10 and N = 100. The contour level plots corresponding to Psol = 0.99 and Psol = 0.01,
delimiting the �mushy� region, have been projected onto the plane (m,L). To the left of the
mushy region, problem instances have almost always a model, whereas instances to the
right almost always have none. (b) Plot of the corresponding search complexity C.

The phase transition region corresponds to a strong increase of the computational
complexity of the search required to decide whether a model for the formula exists.
Complexity is evaluated as the number of expanded nodes in the tree built up during
the search for variable assignments. Figure 2(a) reports the projections of the contour
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level plots at Psol =  0.5, for numbers of variables n = 6, 10 and 14. Figure 2(b) reports
an analogous set of contour plots for a constant number of variables n = 10, and for
cardinality of the relations N = 50, 80, 100 and 130.

m

L

m

L

(a)                                                                    (b)

Figure 2. Plots of the 0.5-level contour of the probability of solution Psol. (a) Graphs cor-
responding to a number of variables n = 6, 10, and 14, with N = 100. (b) Graphs corre-
sponding to relation cardinalities N = 50, 80, 100, and 130, with n = 10.

Given a formula ϕ and an example E, a matching problem π = (ϕ,E) is described by
the 4-tuple (n, N, m, L), and can be represented as a point in the plane (m, L). Given a
formula ϕ and a set E of examples, let ∏ = {(ϕ,E) | E ∈ E }. If L is constant over the
examples, the set ∏ of problems collapses on the same point in the (m, L) plane. By
changing any element of the tuple  (n, N, m, L), the point representing ∏ moves w.r.t.
the phase transition.

3. Abstraction Operators

In [18] we have proposed a four-level model of abstraction, as well as a number of
operators of abstraction, transforming a ground representation into an abstract one.
This model may be seen as a generalization of the semantic theory of abstraction in-
troduced by Nayak and Levy [19]. In this paper we do not need all the details of the
abstraction model nor its full power. We just limit ourselves to consider the definition
of three specific operators, and to analyze their effects when applied to formulas and
examples in the matching problems described in Section 2. These abstract operators
transform both examples and formulas of a matching problem.

Domain Abstraction Operator

The first operator considered is ωind(a1, a2; b) which makes indistinguishable two ele-
ments a1 and a2 of to the set Λ of constants, by replacing them with the same symbol b.
The operator ωind(a1, a2, b) changes every occurrence of either a1 or a2 to an occur-
rence of b in all relations of E. This kind of abstraction is related to the notion of "in-
distinguishability" introduced by Imielinsky [20]. Domain knowledge may suggest
meaningful partitions of the constants according to an equivalence relation.
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Arity Reduction Operator

The second operator, defined as ωhide(R(x1, x2), x2), projects the relation R onto its
first column. In other words, the result of ωhide(R(x1, x2), x2) is another table R* that
has only the first column of R. Correspondingly, the binary predicate α(x1, x2), whose
extension is R, is transformed into a unary predicate β(x1) whose extension is R*:
β(x1) ↔ ∃  x2 [α(x1,x2)]. A similar operator has been introduced by Plaisted [21].

Term Construction Operator

The third operator ωconstr(x, y,�; t) builds up a new composite object t, starting from
separate components x, y, � . A function t = f(x,y,�) specifies the way composition
is obtained. The types (and defining properties) of the components and the resulting
object are linked through a  rewriting rule:

ωconstr  =  type1(x) ∧  type2(y) ∧ � ↔ typenew(f(x,y,�))
A new predicate, typenew(t) is added to the abstract language, where the predicates
type1(x), � are deleted. A new table Rnew(x,y, �, t) is added to E, the objects x y, �
are removed from all relations, according to rules specified in the background knowl-
edge, and the new object t is added whenever possible [25].

4. Matching in Relational Learning

A learning relation algorithm A takes in input a language L (including a set P of
atomic predicates with their associated relations), a target concept ψ, and a set E of
training examples (subdivided into positive, E+, and negative, E�, instances of
 ψ), and outputs a concept description ϕ that approximates ψ. Approximation is usu-
ally evaluated in terms of error of ϕ on an independent set of examples.

During learning, A may generate thousands of tentative descriptions (hypotheses) ϕ,
each one of which has to be matched against all the examples in E, giving rise to a
very large number of matching problems. It is then fundamental, in order to approach
significant real-world problems, to try to reduce the complexity of this step. Let, in the
following, H be the set of hypotheses generated by A during learning. Previous analy-
ses have uncovered the following facts:
• The ensemble ∏ = {(ϕ, E) | ϕ ∈ H, E ∈ E} of matching problems, generated by

pairing each hypothesis ϕ with each training example, shows a marked, bi-
dimensional phase transition (see Figure 1), which acts as an attractor for the search,
i.e., A always ended up searching hypotheses in the mushy region, independently of
the used search algorithm (deterministic or stochastic). This was true both for artifi-
cially generated ensemble of problems and for real-world problems [9, 14]. Moreo-
ver, the mushy region was also the region with the highest variance in complexity.

• The location of the phase transition for both kinds of problems is fairly well pre-
dicted by classical parameters, such as constraint density and constraint tightness [7,
10, 16].
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• The presence of a phase transition in matching does not only affect the computa-
tional complexity of learning, but also its very feasability. In fact, extensive experi-
ments have reveled the presence of a "blind spot" around the zone of the phase tran-
sition, where problems could not be solved at all, namely the learned concept ϕ had
an error, on the test set, close to random guess [14].

Figure 3. Distribution of the learning problems in the plane (m, L), for n = 4 and N = 100.
The three graphs correspond to the contour level plots Psol = 0.01, 0.5, 0.99. Crosses de-
note learning problems that FOIL solved well, whereas dots denote failures. As it clearly
appears, there is a wide zone in which learning turned out to be impossible.

A learning problem λ = (ψ, E) is a pair consisting of a target concept ψ, unknown to
the learner, and the set E of training examples. A learning problem is then character-
ized by the number n of variables and the number m of literals occurring in ψ, by the
cardinality N of the basic relations, and by the number L of constants occurring in
these relations. Let us consider the same setting as in [14]. Here a set of target con-
cepts ψ with the structure (1) have been generated, covering a wide region of the plane
(m, L), as shown in Figure 3. In this figure, points and dots correspond to learning
problems: for each point, the m value is the number of literals in ψ, and the L value is
the number of constants occurring in the examples. The algorithm A, when trying to
solve λ = (ψ, E), knows L, but ignores m. We have added the simplifying assumption
that the hypotheses in H must contain only (substes of) the m predicates occurring in
ψ. Even though the target concept ψ is always a conjunctive formula, its approxima-
tion ϕ may also be a DNF one. The experiments have been performed with three dif-
ferent learner , but Figure 3 refers to the results obtained with FOIL [24].

5. Can Abstraction Help Relational Learning?

Given the findings outlined in Section 4, we are investigating the possibility of using
abstraction operators to achieve two goals:
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• Reducing the computational complexity of matching, so that part of the computa-
tional resources could be diverted from matching and assigned to exploration.

• Reducing the extension of the blind spot where learning proved to be unfeasable.
Let λg = (ψg, Eg) be a learning problem in a representation space that we call "ground"
by convention. Let, moreover, (ng, Ng, mg, Lg) the 4-tuple associated to λg. We would
like to operate as in Figure 4.

A

λg = (ψg, Eg)

ϕg

A

ω
λa = (ψa, Ea)

ϕa

ϕ' g

ω-1

Figure 4. The learning algorithm can operate directly on the learning problem as it is
represented in the ground space, or an abstraction operator can be applied, generating
thus a new representation in an abstract space, where A can try to solve the new problem.
Found (if any) a solution ϕa in the abstract space, we may or may not want to come back
to the original space by appling ω-1 to ϕa. In general, ϕg and ϕ'g are different.

The key idea behind the use of abstraction operators in this context is to move the
point (mg, Lg), to another point (ma, La), in such a way that either the new point is no
more in the blind spot, or the part of the phase transition region where A ends up in its
search is less costly than in the ground space.

Given a learning problem λg = (ψg,Eg) and an abstraction operator ω, let Lg be the
language in which ψg is expressed.  Let us apply the following abstraction algorithm:

(S0) Apply ω to Lg to obtain La

(S1) For every ground example Eg ∈ Eg do

Reformulate Eg into Ea

(S2) Apply A to λa = (ψa,Ea) and find ϕa

(S3) Map back the abstract solution ϕa and find ϕ'g

(S4) Check if ϕ'g is a solution of λg = (ψg,Eg)

Regarding complexity, we may notice that Steps S0, S1, S3 and S4 are executed only
once, whereas most of the computational resources are required in Step S2. In fact, the
complexity of Step S2 is C2 = |H | ⋅ |E | ⋅ c(ϕ, E), where ⋅ c(ϕ, E) is the complexity of
the single matching problem (ϕ, E). Then, even if only a small reduction in complexity
could be achieved for c(ϕ, E), the global reduction can be significantly larger.
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We will now apply the three operators defined above to formulas with structure (1),
and evaluate the achievable reduction in computational complexity (if any), in the
learning context described in Section 4.

An analysis of change of complexity in the TSP has been done in [22], where a
transition from exponential to polynomial complexity has been found by changing the
maximum distance between pairs of cities. However, the aim of the present work is
different, because we do not analyse a possibly analogous transition in complexity, but
we try to reduce average complexity, still remaining inside the exponential regimen.

5.1. Domain Abstraction Operator

Let us consider the domain abstraction operator ωind(a1, a2, b), defined in Section 3. A
motivation for using such operator may reside in the assumption that there exists a
family of solutions of the problem such that literals a1 and a2 need not to be kept dif-
ferent, still preserving the problem semantics.
The effect of applying ωind is that, in each of the m relations contained in any training
example, each occurrence of either a1 or a2 is replaced by an occurrence of b. The
hypothesis space defined by the template (1) does not change. With the application of
ωind, we obtain na = ng, ma = mg, La = Lg - 1, and Na ≤ Ng. The last condition is due to
the possible appearance of duplicate tuples in some of the relations, which have to be
removed. The point Pg, corresponding to the learning problem in the ground space,
jumps down vertically to Pa

(ind), located on the horizontal line L = La = Lg - 1. At the
same time, the phase transition line moves downwards,  as Na ≤ Ng. Semantically, the
effect of ωind is a possible increase in the number of models: all the matching prob-
lems satisfiable in the ground space are still satisfiable in the abstract one, but new
models can be introduced in the abstract space. By considering Figure 3, the applica-
tion of ωind is beneficial, from both the complexity and the learnability points of view,
when Pg is located on or below the phase transition, whereas it may have no effect, or
even be harmful, when Pg is located above it, especially if it is at the border , but out-
side, the blind spot (Figure 3).

Arity Reduction Operator

The operator ωhide(R(x1, x2), x2) consists in reducing the arity of a predicate, by trans-
forming it into one with one variable less. The column in R(x1, x2) corresponding to x2
is deleted. At the same time, the predicate associated to R becomes unary, and, hence,
it disappears from the allowed formulas, because unary predicates do not contribute to
joins. Applying ωhide has the following effects: the number of predicates decreases by
one (ma = mg-1). The number of constants may or may not decrease. In the cases con-
sidered here, in which all the variables have the same range, usually La = Lg. The
number of variables may decrease, in the case the occurrence of x2 in the removed
predicate was the unique one. In the context considered here, we limit ourselves to the
more frequent case na = ng. Moreover, as all relations have the same cardinality, Na =
Ng. The point Pg jumps horizontally to Pa

(hide), located on the vertical line L = La = Lg -
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1. Nothing else changes. The application of ωind is beneficial, from both the complex-
ity and the learnability points of view, when Pg is located on or below the phase tran-
sition, whereas it may have no effect, or even be harmful, when Pg is located above it,
especially if it is at the border , but outside, the blind spot (Figure 3).

Term Abstraction Operator

The term abstraction operator ωconstr(x, y,�; t) is based on the assumption that there
exist problems where it is important to focus on particular substructures. This operator
allows new terms to be constructed. In our setting, applying ωconstr to the template (1)
amounts to replacing a subformula of ϕ with a single predicate, as well as the tuple of
involved variables with a new single variable:

αj1
(yj1

,zj1
)∧ �.∧ αjr

(yjr
,zjr

) ⇔ γ( t) (2)
t = f(x,y,z)

To build this term, it is necessary to first find all the solutions of a smaller matching
problem, and to assign a new constant to each of the tuples in this solution. Let r be
the number of deleted predicates  (the ones in the left-hand side of (2)), s the number
of deleted variables, and M the number of  model of (2). Then, na = ng - s + 1, ma = mg
- r + 1, La = Lg + M. The value Na is computed by Na = [(ma -1) N + M]/ma. hence, Na
may either increse or decrease. In the plane (m, L), the point Pg moves leftward and
upwards, which is most often beneficial, unless Pg is located in the region corre-
sponding to very low L values. From the learnability point of view, the application of
ωconstr may be beneficial when Pg is located at the upper border, but inside, the blind
spot; in this case, problems that were unsolvable in the ground space  may become
solvable in the abstract one.

Complexity Evaluation

A rough evaluation of the complexity reduction can be done as follows. Let Cg = |H |
⋅ |E | ⋅ cg(ϕg, Eg) be the global complexity of the search during the attempt to solve the
learning problem  λg = (ψg, Eg). By assuming that the searcher will examine the same
number of hypotheses, the complexity of the learning search in the abstract space will
be:

                         Ca = |H | ⋅ |E | ⋅ ca(ϕa, Ea) + |E | τ + ξ, (3)

where τ is the cost of abstracting a single example and ξ is the cost of abstracting
the hypothesis language. Then, we obtain:

                    Cg - Ca = |H | ⋅ |E | [cg(ϕg, Eg) - ca(ϕa, Ea) ] - |E | τ  - ξ (4)
Abstraction is computationally useful when the difference  Cg - Ca is positive.
In the case of operator ωind, we have τ = 2 m N and ξ = 0. For ωhide, we have τ = N

and ξ = 1. Finally, for the term construction ωconstr, we obtain τ = [2 r N + M +
cg(αj1

(yj1
,zj1

)∧ �.∧ αjr
(yjr

,zjr
),Eg)] and ξ = r + 1. This last case is particularly interest-

ing, because it corresponds to pre-compiling a part of the matching problem. If
matching has to be done just once, there would be no advantage, but, in learning, the
gain in complexity deriving from a subsequent reduced matching is amplified by the
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factor |H |. Obviously, if the discriminant feature contains a subformula of the pre-
compiled one, learning will fail: domain knowledge should suggest suitable abstrac-
tions. This phenomenon has been observed experimentally [26].

6. Conclusion

In this paper, a preliminary proposal for reducing the complexity of problems through
a change of level of abstraction in the representation is presented. The reduction is
obtained at the expense of introducing false solutions (or, possibly, missing solutions),
as less information is available in the abstract search space. In learning, the usefulness
of these abstrations depends on both the proportion of the useful ground theorems that
are still preserved in the abstract space and the proportion of the non useful abstract
theorems introduced. Extensive experimentations are under way in order to delimit
with more precision the useful abstract regions in the (m,L) planes, and to quantify the
trade-off between complexity reduction and number of false solutions in the quality of
learning.
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Abstract.  Many artificial intelligence approaches to automated fault diagnosis
employ functional or symptomatic abstraction hierarchies in their reasoning
process.  However, these approaches fail to provide rapid response and
adaptability comparable to humans experts.  This paper presents an approach
which allows robust, unstructured switching between abstraction levels and
types using agents that examine the problem domain from different
perspectives.  This approach was implemented and tested with promising
results.

1 Introduction

The automation of large scale manufacturing systems has led to lower cost and higher
quality products.  However, due to the size and complexity of such systems, faults can
be costly.  It is imperative that faults be quickly identified and corrected.  Systems are
now so large that complete sensory information may not be immediately available at
the central control computer.  In addition, a fault may not be readily apparent in the
subsystem in which it occurs; instead, it may manifest itself further in the
manufacturing process.

Researchers have proposed a number of methods to diagnose faults, including the
use of digraphs, parsimonious set covering, probabilistic reasoning, and neural
networks.  However, neural networks, require substantial training and the other
approaches are computationally complex and, therefore, not appropriate when a real
time response is required.  Relatively successful approaches to fault diagnosis have
been proposed using abstraction hierarchies.  Symptomatic abstraction hierarchies
have no knowledge of the manufacturing system domain other than what is explicitly
coded in rules.  As a result, they are prone to give erroneous results when exceptions
are encountered and are unable to diagnose new problems.  Diagnostic systems using
functional abstraction hierarchies contain knowledge of the manufacturing systems
and are able to handle new problems [5].  Unfortunately, functional abstraction
hierarchies that are detailed enough to fully describe large scale systems become
extremely large and their traversal can be computationally expensive.  Such time
delays are unacceptable when real-time response is required.
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In order to address the limitations of both functional and symptomatic reasoning,
Graham, et. al., [6, 7] and Lee [8] have proposed a hybrid diagnostic system which
utilizes a functional reasoning process followed by symptomatic reasoning.  This
hybrid diagnostic system combines rapid diagnosis of symptomatic reasoning with the
robustness of functional reasoning.  When a problem is detected, a best-first search of
the functional hierarchy is performed using fault probabilities to locate the terminal
node which represents the most likely physical component to fail.  A symptomatic
abstraction hierarchy exists for each terminal node in the functional abstraction.  The
symptomatic hierarchy consists of a set of rules which associate a diagnosis (rule
consequent) with observed symptoms (rule antecedent).  The symptomatic hierarchy
associated with the terminal node representing the likely component is analyzed using
a modified backward chaining approach to determine the diagnosis.  To reduce the
cost of acting on a possible diagnosis with an extremely high cost in terms of time and
monetary resources, a modification of the Shannon entropy for failure probabilities is
used to provide maximum fault discernment per unit cost [8].  Each terminal node in
the hierarchy is examined until a successful diagnosis is achieved.  If no diagnosis is
achieved, the functional hierarchy is examined to ascertain the next most likely
terminal node and the corresponding symptomatic hierarchy is traversed.

Although the hybrid approach incorporates the advantages of both functional and
symptomatic reasoning, it has two shortcomings.  First, in a sufficiently complex
system, a significant amount of computation may be required to traverse the
functional hierarchy and then the corresponding symptomatic hierarchy in order to
identify a problem with a very high probability or a commonsense diagnosis.  Second,
once a branch at a high level in the functional hierarchy has been selected using fault
probabilities, all of the terminal nodes in that branch must be inspected before
proceeding to the next branch.  If a fault exists in another branch, finding it must wait
until the entire branch has been exhaustively searched.

2 Robust Switching Between Abstraction Types and Levels

Studies of human diagnostic reasoning indicate that the brain appears to use a
modular architecture which integrates a variety of strategies [1, 9].  The mind appears
to attempt to determine the approximate location in the system where the fault has
manifested itself and work backward from that point.  Humans then utilize memories
of past experiences with characteristics similar to the current situation [10].  These
past experiences are often referred to in cognitive psychology as episodic experience
[1].  Once a diagnosis is hypothesized, the human will examine the system to confirm
or reject the hypothesis [10].

In our diagnostic system [2, 3], we have adapted the aforementioned model of
human cognition to the hybrid system to allow the diagnostic reasoning to initiate a
search at any node within either the functional or symptomatic abstraction hierarchies.
The various strategies which the brain integrates are modeled by agents which
examine the problem space from different perspectives.  The information returned by
the agents is then integrated into a hypothesis designating the most likely source of
the fault.  The collection of past experiences is implemented in an episodic experience
cache (EE cache).  The agent-based diagnostic algorithm is presented in Figure 1.
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1. The coordinator identifies the most likely subsystems at fault and denotes the
result as set F.  The episodic experience agent is then invoked.

2. Check the EE cache for a recent diagnosis that matches available data for the
current fault.  If any matches are found, examine the abstraction hierarchy starting
at the corresponding nodes.  If the EE cache does not produce a successful
diagnosis, propagate advisor agents to make recommendations of hierarchy nodes
at which to start the diagnosis based upon their point of view.

3. The EE agent aggregates the advisor agent opinions for each node and ranks the
aggregated opinions in order of preference.

4. The ranked nodes are examine in order of preference.  When a node is examined,
the entire abstraction hierarchy below it is traversed in the diagnostic process.

5. If a successful diagnosis was not achieved, return to step 1 to determine the next
most likely set of subsystems.

Fig. 1.   Algorithm for the agent-based approach to fault diagnosis.

The first step in the algorithm is implemented using a central coordinator that
identifies the subsystem in which the fault has manifested itself using gross
operational status indicators for each subsystem, such as an operational timeout.  Only
the operational status of each subsystem is transmitted to the coordinator on a regular
basis, since, as previously noted, the transmission of all sensory data in a very large
system would be impractical.  Using a fault propagation tree, the coordinator
determines the subsystems most likely at fault, denoted as the set F.  Of the
subsystems exhibiting abnormal status, the one farthest upstream in the fault
propagation sequence is placed in set F, as are the subsystems just prior to it to
account for minor fault propagation.

The coordinator will then invoke the episodic experience agent, or EE agent,
which emulates the primary mode of human reasoning by examining the knowledge
base of past experiences in the episodic experience cache.  Using the fault set F and
the limited sensory data available, the EE agent will attempt to locate a match in the
EE cache.  If an exact match is found, the EE agent will present the hypothesis for
confirmation.  This confirmation may be accomplished by a human examining and/or
correcting the hypothesized problem or by software dispatched to examine the
location of the proposed diagnosis.

If a diagnosis cannot be made using the EE cache, the EE agent will propagate
advisor agents to examine the problem domain.  Each of the advisor agents will
examine the situation from a different perspective and make recommendations based
on its point of view.  The agents will have available the fault set F and any recent
sensory data which has been gathered as part of the diagnostic process.  The advisors
may recommend or oppose various rules (or consequents of rules) in the EE cache.
The EE cache is a set of production rules rj of the form s1 ∧ s2 ∧ � ∧ d1 ∧ d2 ∧ � →
ck where s2 , s2, � are the operational status indicators for particular subsystems and
d1, d2, ... are sensory data.  A given combination of subsystem abnormalities and
sensory data will indicate a particular consequent as the possible source of the fault.
The consequent, ck, indicates node k in the functional or symptomatic abstraction
hierarchy at which to proceed with the diagnostic search.  The agents will select those



306           Terrence P. Fries and James H. Graham

consequents that satisfy their perspective as the most likely sources of the fault.  Each
agent recommendation is a confidence factor indicating either support or opposition to
a given consequent representing a node in one of the abstraction hierarchies.  Due to
the imprecise and incomplete nature of the information available to the agents, the
recommendations are expressed in terms of fuzzy numbers.

The advisor agents used in this diagnostic approach may vary based upon the
requirements of the particular system.  In this research, agents have been employed
with expertise that considers recent faults, frequently occurring faults, minimization
of the resource cost to examine possible fault sources, mean-time-to-failure of
components, and cyclic failures.

Once the agents have made their recommendations, the EE agent uses them to
select the most likely nodes.  First, the fuzzy opinions for each node are aggregated
using a combination of the similarity matrix and weighted linear interpolation
approaches [2, 4].  The nodes are then ranked based upon the aggregate opinion for
each using a modification of the Nakamura fuzzy preference function [2, 4].  The
mostly likely node is then examined  If the first node fails to produce a diagnosis, the
remaining nodes are examined in order of fuzzy ranking, until a successful diagnosis
is achieved.  If none of the nodes in the fuzzy ranking produce a diagnosis, control is
returned to the coordinator to select a new set of likely fault nodes, F, by using the
subsystems immediately upstream in the fault propagation tree from those in the
current set F.

3 Implementation and Testing

An agent-based diagnostic system utilizing the abstraction hierarchies and diagnostic
algorithm discussed in the previous section has been implemented and tested.  The
diagnostic system was implemented for a computer integrated manufacturing system
testbed consisting of a SpanTech conveyor system on which pallets are transported on
two conveyors in the Factory Automation Laboratory at the University of Louisville.
The workcell has two robots that interact with the system and seven stations to
simulate manufacturing processes including assembly, material handling, and
inspection.  The functional hierarchy in Figure 2 exhibits the abstraction of these
subsystems.  The software was created using C++ with the FuzzyCLIPS rule-based
shell for handling the episodic experience cache.

Tests were run to compare the performance of the proposed agent-based system
with the traditional hybrid system that always begins the diagnostic process at the top
of the functional hierarchy and lacks an episodic experience cache.  Table 1 provides
a comparison of the number of hierarchy nodes examined using both the traditional
hybrid system and the agent-based system with six cases that test a variety of fault
situations.  Case 1 allowed the agent-based approach to produce a diagnosis using the
episodic experience cache without need for the agents while the traditional approach
traversed both abstraction hierarchies.   Cases 2 to 5 required the agent-based
approach to use the agents for recommendations while the traditional hybrid system
traversed both hierarchies.  Case 6 demonstrated the ability of the each system to
handle fault propagation from a subsystem upstream of the subsystem in which the
fault was manifested.  The agent-based diagnostic system increased diagnostic
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accuracy, while reducing by an average of 91% the number of nodes in the abstraction
hierarchies that must be examined to make a diagnostic determination.

Fig. 2.   Functional abstraction hierarchy of the system used in testing.

Table 1.   Number of nodes in abstraction hierarchies examined for each test case.

Test Case Traditional
Hybrid System

New Agent-Based
System

1. use of EE cache 75 2
2. use of agent opinions 64 1
3. use of agent opinions 50 1
4. use of agent opinions 61 10
5. use of agent opinions 2 5
6. fault propagation 74 11

4 Conclusions

This diagnostic approach clearly outperforms the traditional hybrid approach.  It
allows robust, unstructured switching between abstraction levels and between
functional and symptomatic hierarchies.  The approach avoids the brittleness of
symptom-based approaches and reduces the computational complexity associated
with reasoning using either functional abstractions alone or traditional hybrid systems
by allowing the diagnostic process to utilize prior experience and to bypass layers of
the functional abstraction hierarchy.
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The multiple agent diagnostic approach presented in this paper has been designed
to diagnose faults in manufacturing systems, however, it has many other applications.
The approach may be applied to the diagnosis of faults in other large computer-
controlled systems such as mass transit systems, chemical processing plants, power
plants, and military command and control systems.  The approach to robust switching
may also be applied to areas other than diagnostics that require robust switching
between abstraction levels and types.
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Abstract. Inferring causality from equation models characterizing engi-
neering domains is important towards predicting and diagnosing system
behavior. Most previous attempts in this direction have failed to rec-
ognize the key differences between equations which model physical phe-
nomena and those that just express rationality or numerical conveniences
of the designer. These different types of equations bear different causal
implications among the model parameters they relate. We show how
unstructured and ad hoc formulations of equation models for apparent
numerical conveniences are lossy in the causal information encoding and
justify the use of CML as a model formulation paradigm which retains
these causal structures among model parameters by clearly separating
equations corresponding to phenomena and rationality. We provide an
algorithm to infer causality from the active model fragments by using
the notion of PreCondition graphs.

1 Introduction

CML [1] is designed to model time varying physical systems through the use of
model fragments which are specified through the defModelFragment form. The
participants clause identifies the objects that participate in the model fragment
instance. The conditions clause specifies the conditions under which an instance
of a model fragment is active. The consequences clause establishes equations that
help to define the behavior of the participants. The defEntity form is a restricted
version of defModelFragment that is used for defining properties of a persistent
object that are always true.

DME [2] is an environment for simulation of engineering models specified
through CML. Each model fragment has a set of activation conditions that
are constantly monitored. At each state, the system combines the equations of
active model fragments into a set called the equation model which it uses to
derive a numerical simulation. An equation model characterizes a qualitative
state which is a period during which the equation model remains unchanged.
When a quantity crosses a boundary, the system triggers the proposal of a new
equation model under a new qualitative state.
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2 PreCondition Graphs

We define the notion of a PreCondition graph over a model scenario as a partial
order graph on the active model fragments defined either through defModelFrag-
ment or defEntity using the relation of subsumption of preconditions and defining
quantities. A precondition for a model fragment is the conjunction of the par-
ticipants clause and the conditions clause for that model fragment to become
active. A defining quantity for a model fragment is one which is present in the
equations but is not a participant - e.g. current I is a defining quantity for the
model fragment corresponding to Ohm’s law being active under the presence of
a resistor R connected across a voltage source V . A model fragment is placed
preconditionally above another if its preconditions (or defining quantities) form a
subset of the preconditions for the other - e.g. The model fragment that models
heat dissipation through the resistor has I and R in its preconditions. Since this
forms a superset of the defining quantities for the Ohm’s law model fragment,
it is placed lower in the PreCondition graph 1.

3 Mathematical Equations - Phenomena vs Rationality

We observe the truth of the following principles to draw out the differences in
the causal implications borne by different types of mathematical equations.

3.1 Principle of Causal Asymmetry in Rationality

Equations corresponding to rationality either do not encode any causality among
the quantities they relate, or encode causality in a premeditated single direction.
For example, consider the equation laid down for capturing a statement such as
The heat generated by body X is equal to the heat absorbed by body Y. Notice
that we have a specific direction of causality from X to Y. The heat absorbed
by body Y does not causally affect the heat emitted by body X - it may do so
only numerically. Typically, such equations correspond to the C+ operator in
the CML [1].

3.2 Principle of Modularity in Physical Laws

All the phenomena through which quantities have a direct causal influence on a
given quantity occur at the same topological level of the PreCondition graph. A
set of nodes occur at the same topological level with respect to a directed acyclic
graph if there is no topological constraint among any two of them. The principle
of modularity is an extension of the notion of exogenous quantities in a system.
A PreCondition graph is just an encoding of the potentially active phenomena
in a system in terms of modular subsystems - each redefining the quantities that
are exogenous to them in a modular fashion.
1 There are certain normal forms that model fragments have to be specified in. The

discussion of this aspect is beyond the scope of this condensed version of the paper
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3.3 Principle of Causal Symmetry in Physical Phenomena

In any physical phenomenon, all quantities play a causally equal role unless the
symmetry is broken by a causal history of the quantities, induced by some phe-
nomenon at a preceding topological level of the PreCondition graph. Consider the
equation modeling Ohm’s law which relates the voltage, current and resistance
equally; in the sense that a change in any quantity can affect any other quan-
tity. However, if we know that the voltage for example, is determined by just
the precondition of the existence of a battery getting satisfied, then it carries a
causal history with it and symmetry is broken in the causal clique. Now, we can
say that a change in resistance can only affect the current and not the voltage.

4 Inferring the Causal Order Graph - A Topological Sort

Given the principles that we stated in the foregoing sections, the algorithm to
infer the causal order graph from the PreCondition graph is straightforward:

– Obtain a topological sort on the PreCondition graph.
– Traverse this ordering by following the principle of modularity; we essentially

collect all causal edges defined in each model fragment except for the ones
that contradict the principle of modularity.

– All edges in the last node (Rationality) are incorporated in addition to those
that arise in the previous steps.

The last node in the PreCondition graph is the Rationality node which consists of
qualitative or quantitative equations that get composed by the C+ or = operator.
The edges here reflect certain numerical assumptions or mathematical truths.
All the edges under the specification of this node will have to be incorporated.
While the C+ operator merely adds an edge, the = operator may also merge
corresponding quantities in the PreCondition graph in a straightforward fashion.

4.1 An Example

Fig. 1. illustrates the various notions as applied to the dynamics of a mass
connected to a spring hanging from a horizontal rigid structure under a height-
dependent gravitational force.

5 Analysis and Future Work

Often, two quantities that play physically different rules but are numerically
equivalent, are not distinguished when equations are hand-written. This results
in a loss of information about the assumptions we make or the phenomena in
which quantities are involved. Compositional modeling avoids these lossy trans-
formations and therefore facilitates explanation generation and diagnosis in com-
plex engineering domains [4].
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Fig. 1. shows physical setting, precondition graph and causal order graph in
that order

Previous work to infer causality [3] refer only to the cases where the con-
straints relating model parameters are known in advance. In one sense, we have
presented an algorithm to infer causality which is online with respect to the
constraints (equations) that get specified. Representing such systems so that
appropriate causal networks are produced depending on what additional con-
straints are specified later, is important in the context of reasoning about uncer-
tainty in phenomena. Correspondingly, future work is directed towards merging
the ideas of bayesian networks and compositional modeling to be able to deal
with queries related to interference patterns in causal models under uncertainty
considerations.

Unlike previous attempts, we make no assumptions regarding acyclicity of
the causal networks. Our algorithm deals with the actual semantics and physics
of the system rather than just a syntactic treatment of the equations.
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Abstract. We present in this paper a method for finding target hy-
potheses in Inductive Logic Programming(ILP). In order to find them
efficiently, we propose to use abstraction. Given an ILP problem and a
hypothesis space H, we first consider an abstraction of H. An abstract
space corresponds to a small subspace of H. Then we try to find hypothe-
ses satisfying a certain condition by searching in several such abstract
spaces. Since each abstract space is small, the task is not difficult. From
these hypotheses, we can easily identify a hypothesis space in which all
consistent hypotheses can be found. Since the obtained space is a part
of the original H, we can expect that the targets are efficiently found by
searching only in the part.

1 Introduction

As many researchers have shown, using abstraction is very useful to improve
efficiency of planning and theorem-proving [3,4,5,6,7,9]. It can also be used as
the basis of similarity in analogical reasoning [8]. In this paper, we show an ef-
fectiveness of abstraction in the field of machine learning, especially in Inductive
Logic Programming (ILP) [1,2].

The task of ILP is to find (learn) a logic program, called a target program,
that can derive all positive and no negative examples with a given background
knowledge. Such a target is found by searching in a hypothesis space, where a
hypothesis is a possible logic program. In general, since a hypothesis space tends
to be huge, searching in the whole space is quite impractical from the viewpoint
of computational cost. To find the targets efficiently, it is useful to identify a
subspace that contains the target hypotheses we should find out. Needless to
say, a small subspace is preferable to a large subspace. Furthermore, the cost of
identifying such a subspace should be as low as possible. We would be able to
improve efficiency of our task of finding the targets, if we can efficiently identify
such a small subspace. From this viewpoint, this paper presents a method for
finding such a subspace with the help of abstraction.

Many excellent ILP systems have already been proposed. Although the search
processes for finding targets are well controlled in these systems, we expect
that identifying such a subspace of the whole hypothesis space is very useful
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to obtain further improvement of their efficiency. Based on the subspace, their
search processes would be biased further. Therefore, we can expect that our
method is used as a basis of pre-process that should be performed before running
existent ILP systems.

2 Inductive Logic Programming

Let K be a logic program (called background knowledge), and E+ and E− are two
sets of ground atoms with a predicate p (called the sets of positive and negative
examples, respectively). The task of Inductive Logic Programming (ILP) is to
find a logic program H (a set of definition clauses of p) such that

∀e ∈ E+ K ∪H � e and ∀e ∈ E− K ∪H �� e.

Target programs can be found by searching in a set of hypotheses in the form of
logic programs. We devote in this paper our attention to finding a target program
that consists of single clause C (that is, H = {C}). In what follows, therefore, we
simply consider a hypothesis as a definition clause of p. A hypothesis satisfying
the above condition is called a consistent hypothesis.

Let H be a set of hypotheses (clauses). The hypotheses in H can form a
structured space, called a hypothesis space, according to a generality ordering �
on clauses 1. We denote the space by H = (H,�).

In general, H contains a huge number of hypotheses. In order to efficiently
obtain a target hypothesis H∗ in H, it is required to identify a subspace of H
in which H∗ is surely contained. If we have such a subspace, searching in the
subspace is sufficient for our ILP task.

In the next section, we present a method for identifying such a subspace with
the help of abstraction.

3 Finding Consistent Hypotheses with Abstraction

We outline in this section our method with a simple ILP problem shown in
Figure 1. For simplicity, we assume that the whole hypothesis space H consists
of all possible definition clauses of daughter each of which satisfies the following
conditions 2: 1) Each hypothesis is function-free, 2) Variables in the body always
occur in the head, and 3) Predicate symbols, parent, female and male, can
occur in the body. We try to find a consistent hypothesis in H with the help of
abstraction.

We first consider an abstraction of H. In a word, for a predicate symbol p, an
abstract hypothesis space with respect to p is obtained by ignoring all literals in H
except ones with p. That is, it is a kind of ABSTRIPS-style abstraction [3]. The
abstract space corresponds to a subspace of H that is in general much smaller
than the original one.
1 The ordering here is defined by θ-subsumption relation.
2 Note that they are not restrictions which should always be imposed on our method.



A Method for Finding Consistent Hypotheses Using Abstraction 315

Background Knowledge:
parent(eve,sue). parent(ann,tom).

parent(pat,ann). parent(tom,sue).

female(ann). female(sue). female(eve).

male(pat). male(tom).

Positive Examples:
daughter(sue,eve). daughter(ann,pat).

Negative Examples:
daughter(tom,ann). daughter(eve,ann).

Fig. 1. An ILP problem

For each abstract space, we then try to find the set of hypotheses that can
derive all positive examples with the background knowledge. Since each abstract
space is small, we can expect that these hypotheses can be found efficiently. In
each abstract spaces for the ILP problem, we can find

Sparent = {daughter(X,Y). daughter(X,Y):-parent(Y,X).}
Sfemale = {daughter(X,Y). daughter(X,Y):- female(X).}

Smale = {daughter(X,Y).},

where Sp denotes the set of such hypotheses in the abstract space w.r.t. p. It
should be noted that in order to obtain the sets, we examined only 24 hypotheses
in the abstract spaces.

From the obtained hypothesis sets, we can easily compute a set of candi-
date hypotheses that constitutes a subspace of the original H. Each candidate is
simply obtained as a union 3 of hypotheses each of which is in the individual ab-
stract spaces. It is ensured that the candidate set contains all target hypotheses.
Therefore, searching only in the candidate set is sufficient for our ILP task.

For the ILP problem, we have the following set of candidates:

CandidateHypo(daughter(X, Y)) = { daughter(X,Y).
daughter(X,Y):-parent(Y,X).

daughter(X,Y):-female(X).

daughter(X,Y):-parent(Y,X),female(X).}

Although this subspace consists of only 4 hypotheses, it is sufficient for the
task of finding a consistent definition clause of daughter. On the other hand,
the original hypothesis space H consists of 256 hypotheses.

Since only the last candidate can derive all positive and no negative examples
with the background knowledge, we easily find out that it is the only consistent
hypothesis.

3 A hypothesis (clause) is often denoted by the set of its constituent literals.
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4 Concluding Remarks

In this paper, we proposed a method with abstraction for efficiently identifying
a small hypothesis space containing all consistent hypotheses for a given ILP
problem. The obtained small space would work as additional search biases in
existent ILP systems. We verified an effectiveness of our method with a simple
example. For more complex examples, we are highly expecting that our method
would show more considerable improvement of efficiency of the task.

As an important future work, we need to theoretically analyze an effective-
ness of our method with abstraction. Furthermore, it is also necessary to show
such an effectiveness empirically. We are currently implementing an ILP system
integrating a pre-process module based on our method. We would like to show a
usefulness of the pre-process. These results will be reported in the near future.

At the first step of the study, this paper dealt with single-clause hypothe-
ses. By adequately dividing the set of positive examples into several subsets
and applying our method for each of the subsets, we would be able to obtain
multiple-clause hypotheses in which we are more interested. Investigating its
precise procedure is also an important future work.

Furthermore, we are planning to propose a similar method that can work in
more practical domains. We have to extend the current method so that it can
adequately deal with noisy examples. Such a method is very important in the
field of KDD (Knowledge Discovery in Databases).
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1 Deductive Synthesis of Numerical Simulation Programs
from Networks of Algebraic and Ordinary Differential
Equations

Scientists and engineers face recurring problems of constructing, testing and
modifying numerical simulation programs. The process of coding and revising
such simulators is extremely time-consuming, because they are almost always
written in conventional programming languages. Scientists and engineers can
therefore benefit from software that facilitates construction of programs for sim-
ulating physical systems. Our research adapts the methodology of deductive
program synthesis to the problem of constructing numerical simulation codes.
We have focused on simulators that can be represented as second order functional
programs composed of numerical integration and root extraction routines. We
have developed a system that uses first order Horn logic to synthesize numerical
simulators built from these components. Our approach is based on two ideas:
First, we axiomatize only the relationship between integration and differentia-
tion. We neither attempt nor require a complete axiomatization of mathematical
analysis. Second, our system uses a representation in which functions are reified
as objects. Function objects are encoded as lambda expressions. Our knowledge
base includes an axiomatization of term equality in the lambda calculus. It also
includes axioms defining the semantics of numerical integration and root extrac-
tion routines. We use depth bounded SLD resolution to construct proofs and
synthesize programs. Our system has successfully constructed numerical simu-
lators for computational design of jet engine nozzles and sailing yachts, among
others. Our results demonstrate that deductive synthesis techniques can be used
to construct numerical simulation programs for realistic applications [EM98].

2 A Transformation System for Interactive Reformulation
of Design Optimization Strategies

Automatic design optimization is highly sensitive to problem formulation. The
choice of objective function, constraints and design parameters can dramatically
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impact the computational cost of optimization and the quality of the resulting
design. The best formulation varies from one application to another. A design en-
gineer will usually not know the best formulation in advance. In order to address
this problem, we have developed a system that supports interactive formulation,
testing and reformulation of design optimization strategies. Our system includes
an executable, data-flow language for representing optimization strategies. The
language allows an engineer to define multiple stages of optimization, each using
different approximations of the objective and constraints or different abstrac-
tions of the design space. We have also developed a set of transformations that
reformulate strategies represented in our language. The transformations can ap-
proximate objective and constraint functions, abstract or reparameterize search
spaces, or divide an optimization process into multiple stages. The system is
applicable in principle to any design problem that can be expressed in terms
of constrained optimization; however, we expect the system to be most useful
when the design artifact is governed by algebraic and ordinary differential equa-
tions. We have tested the system on problems of racing yacht design and jet
engine nozzle design. We report experimental results demonstrating that our re-
formulation techniques can significantly improve the performance of automatic
design optimization. Our research demonstrates the viability of a reformulation
methodology that combines symbolic program transformation with numerical
experimentation. It is an important first step in a research program aimed at
automating the entire strategy formulation process [EKBA98].

3 Multi-level Modeling for Engineering Design
Optimization

Physical systems can be modeled at many levels of approximation. The right
model depends on the problem to be solved. In many cases, a combination of
models will be more effective than a single model alone. Our research investigates
this idea in the context of engineering design optimization. We present a family
of strategies that use multiple models for unconstrained optimization of engi-
neering designs. The strategies are useful when multiple approximations of an
objective function can be implemented by compositional modeling techniques.
We show how a compositional modeling library can be used to construct a vari-
ety of locally calibratable approximation schemes that can be incorporated into
the optimization strategies. We analyze the optimization strategies and approx-
imation schemes to formulate and prove sufficient conditions for correctness and
convergence. We also report experimental tests of our methods in the domain of
sailing yacht design. Our results demonstrate dramatic reductions in the CPU
time required for optimization, on the problems we tested, with no significant
loss in design quality [EKSY97].
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4 Abstraction of Constraint Satisfaction Problems via
Approximate Symmetry

Abstraction techniques are important for solving constraint satisfaction prob-
lems with global constraints and low solution density. In the presence of global
constraints, backtracking search is unable to prune partial solutions. It therefore
operates like pure generate-and-test. Abstraction improves on generate-and-test
by enabling entire subsets of the solution space to be pruned early in a backtrack-
ing search process. These papers describe how abstraction spaces can be charac-
terized in terms of approximate symmetries of the original, concrete search space.
They define two special types of approximate symmetry, called “range symme-
try” and “domain symmetry”. They also present algorithms for automatically
synthesizing hierarchic problem solvers based on range or domain symmetry. The
algorithms operate by analyzing declarative descriptions of classes of constraint
satisfaction problems. Both algorithms have been fully implemented. These pa-
pers also present data from experiments testing the two synthesis algorithms
and the resulting problem solvers on several NP-hard constraint satisfaction
problems [Ell93a], [Ell93b].

References

[EKBA98] T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation
system for interactive reformulation of design optimization strategies. 1998.

[EKSY97] T. Ellman, J. Keane, M. Schwabacher, and K. Yao. Multi-level modeling
for engineering design optimization. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing, 11(5):357–378, 1997.

[Ell93a] T. Ellman. Abstraction via approximate symmetry. In Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, Chambery, France,
August 1993.

[Ell93b] T. Ellman. Synthesis of abstraction hierarchies for constraint satisfaction by
clustering approximately equivalent objects. In Proceedings of the Tenth Interna-
tional Conference on Machine Learning, Amherst, MA, 1993.

[EM98] T. Ellman and T. Murata. Deductive synthesis of numerical simulation pro-
grams from networks of algebraic and ordinary differential equations. Automated
Software Engineering, 5(3), 1998.



Using and Learning Abstraction

Hierarchies for Planning

Research Summary

David Furcy

Georgia Institute of Technology
College of Computing

Atlanta, GA 30332-0280
dfurcy@cc.gatech.edu

http://www.cc.gatech.edu/∼dfurcy/

My research interests lie at the intersection of the planning and machine learning
areas. My research objectives include the design of new AI planning methods
that can improve their performance over time through learning. I am particularly
interested in planning tasks as an opportunity for learning, as well as learning
as a way to improve planning performance.

My past research has focused on Real-Time Search as a general class of
methods that can solve planning problems fast by interleaving planning (via lo-
cal searches) and plan execution. In addition, Real-Time Search methods have,
builtin, the ability to learn: The combination of their planning and learning be-
haviors guarantees that they will eventually find a minimum-cost plan when
repeatedly solving similar planning problems. Recently, I have designed and
implemented a new Real-Time Search method, called FALCONS, that learns
significantly faster than state-of-the-art Real-Time Search methods [1] [2]. The
main contribution of my work is the design of a new action-selection rule that
chooses actions using local information that is closely related to the long-term
learning objective. In addition to speeding up learning significantly, FALCONS
retains the local search flavor (and therefore the ability to act fast) of, and is
not more knowledge-intensive to implement nor more computationally costly at
run time than, standard real-time search methods. More generally, my research
sends an important message to both the planning and reinforcement learning
communities: If one’s goal is to make quick decisions while being able to learn
an optimal plan over time, then the methods that are currently favored (such as,
LRTA* or Q-Learning) are not optimal with respect to the learning objective.
FALCONS is a proof by construction that there exists other ways to make better
use of available knowledge and to learn new knowledge faster.

During past research, I have come to realize the importance of abstraction
hierarchies for efficient planning. Many abstraction-based planning methods take
advantage of existing abstraction hierarchies in order to (1) abstract the current
problem instance, (2) solve the abstract problem, and (3) refine the abstract
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solution. I am interested in the two following ways of building on and extending
these existing approaches:

1. Typically, these methods generate a complete plan at the abstract level(s)
before refining it. Since it may be necessary to backtrack to a higher ab-
straction level during refinement, many such approaches focus on ways to
minimize the need for backtracking, since much of the effort spent planning
at the higher level is potentially wasted upon backtracking. A potential alter-
native would be to combine Real-Time Search methods with such planning
methods, not only at the lowest, concrete level, but also at abstract levels.
This would mean interleaving planning at an abstract level with refinement
to lower levels, and may present several advantages. First, the impossibility
to refine an abstract plan may be discovered early on and this may save the
effort of completing the abstract plan. Second, interleaving abstract planning
with refinement would make the planner more opportunistic, since focusing
on more concrete levels early on allows one to monitor the environment more
often and to detect opportunities for acting and learning before it is too late.
Third, adding the ability to use abstraction hierarchies to Real-Time Search
methods would enable them to make more informed decisions since the same
amount of lookahead (say, of one action) at an abstract level correspond in
reality to a larger lookahead than a lookahead of one at the concrete-level.

2. Many existing methods in the planning literature use abstraction hierarchies
that are known a priori that is, input by the designer of the method. This was
obviously the first step needed in showing the benefit of using abstractions for
planning. However, some researchers, especially in the reinforcement learning
literature have started to think about ways one could learn such abstraction
hierarchies. This is, I believe, a very promising direction to follow and it will
remain an important point of focus for my future research. I am not sure
at this point whether Real-Time Search will remain a good starting point
for such investigations, but my current, tentative answer would be positive,
based on the close relationship between these methods and the dynamic-
programming-based methods that are largely favored by the Reinforcement
Learning community.
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My work is on learning Probabilistic Relational Models (PRMs) from structured data
(e.g., data in a relational database, an object-oriented database or a frame-based system).
This work has as a starting point the framework of Probabilistic Relational Models,
introduced in [5, 7]. We adapt and extend the machinery that has been developed over
the years for learning Bayesian networks from data [1, 4, 6] to the task of learning
PRMs from structured data. At the heart of this work is a search algorithm that explores
the space of legal models using search operators that abstract or refine the model.

A standard approach to learning Bayesian networks (BNs) from data is a greedy hill-
climbing search over network structures. For a given network structure, we typically use
the maximum likelihood estimates for the parameters, and we use a scoring function,
either Bayesian or MDL-based, to evaluate the current candidate network. Edges in the
network represent direct dependencies between attributes, and each step in the search
algorithm can either add, delete or reverse an edge. Of course, at a high-level, this search
can be viewed as a search through the space of models where each step either refines
the model (by adding an edge) or abstracts the model (by deleting an edge), or, in the
case of edge reversal, some combination. We have developed algorithms for learning
PRMs that take a similar approach; here viewing the algorithm as search with a set of
abstract and refine operators provides a useful unifying framework.

A PRM describes a template for a probability distribution over a database. The
template includes a relational component, that describes the relational schema for the
domain, and a probabilistic component, that describes the probabilistic dependencies
that hold in the domain. A PRM, together with a particular database of objects, defines
a probability distribution over the attributes of the objects and the relations that hold be-
tween them. The relational component describes entities in the model, attributes of each
entity, and references from one entity to another. The probabilistic component describes
dependencies among attributes, both within the same entity and between attributes in
related entities. The probabilistic component can also be used to model uncertainty over
object references. Rather than enumerating all of the potentially referenced entities and
explicitly specifying a probability for each reference, we make use of abstraction to
specify a more compact model. To do this, we partition the referenced entities into
equivalence classes based on some set of their attributes; the probability of referencing
any object in the equivalence class is the same.

In order to search this space effectively, we performed a phased search. We begin by
searching for intra-object dependencies. We next consider dependencies between object
attributes that can be reached by following one object link. In addition to following ex-
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isting links between objects, our algorithm can construct new types of links by refining
an existing link. We continue in this fashion, allowing longer and longer dependency
chains. At each phase in the search, the steps considered include

– Add/Delete/Reverse an attribute dependency
– Add/Delete an attribute from reference dependency definition
– Add/Delete an attribute from link definition
– Refine/Abstract the class hierarchy for entity definition

As in BN learning, we define a scoring function and use this to guide our search. Other
operators that we consider in our search can be used when we have background knowl-
edge about feature hierarchies and can be exploited in defining local probability models.
These are applicable both to PRMs and BNs.

We have had success applying our learning algorithm in a variety of real world
domains including a database describing companies and their relationships, such as
mergers and acquisitions, a domain describing tuberculosis patients and their contacts,
and a movie database. We have also validated our results on synthetic domains including
a simple genetics domain and a part-supplier/consumer database [2, 3].
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1 My Research Areas in Brief

My work is focused on interdisciplinary areas of computer science and natural
sciences. Currently, I am working on diagnosis of continuous and hybrid systems.
In the recent past, I have worked on explanation generation [1, 2] in the context
of compositional modeling [3].

2 Synergy between Compositional Modeling and
Bayesian Networks

My research touches on the potential synergies between compositional modeling
[3] and the theory of bayesian networks. Compositional modeling is an effective
way of capturing the physics of a scenario. The basic building blocks are model
fragments that model physical phenomena. The nodes in bayesian networks on
the other hand, usually correspond to model parameters or quantities and the
edges try to capture correlations between them under uncertainty considera-
tions. The physics of the system is not captured in an efficient or complete way
especially under assumptions of acyclicity.

Consider for example, the task of modeling the following physical scenario:
A resistor R (which is perhaps part of a larger circuit), is observed for the values
V (potential difference across it) and I (current flowing through it); and the
observations tabulated. The resulting curve fits the V=IR curve quite well. From
this, we may want to say that with a certain probability p1(V, I, R), the curve fits
V=IR. Similarly, with a certain probability p2(V, I, R), the curve fits some other
relation between these 3 parameters say f2(V, I, R). Upon further experiments, we
interfere at V and do the tabulation again. We may now want to say things like
- with probability p3(V, I, R) the curve fits V=IR when the voltage is interfered
with value V. Similar statements can be made when we interfere at I.

It is not possible to model this in terms of a bayesian network over V, I
and R. Although it might be possible to get around this by introducing all
kinds of hidden nodes, the technique is not natural or scalable to more complex
domains. However, following a phenomena-oriented approach, the above scenario
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can be modeled very easily using data structures similar to that in compositional
modeling. Moreover, modeling in such a way also enables us to make necessary
inferences about the underlying relations and causal structures among model
parameters using the notions of the principle of modularity, causal symmetry etc
[2].

In general, when the physics of the system is known well enough, we have
uncertainty over physical laws rather than uncertainty over values of model pa-
rameters. Correspondingly, our observations and queries may also be related to
phenomena rather than quantities. The goal is to model the physical aspects of
a system using compositional modeling and the uncertainty aspects in a way
so that standard bayesian network approach can be exploited towards inference
algorithms to answer queries.

In attempting this, we come across uncertainty at two levels - at the level of
preconditions over model fragments, and at the level of what types of functional
relations hold among the parameters when a model fragment becomes active. A
related problem that arises in the face of uncertainty is the necessity to provide
a framework to allow for different model fragments to become active (and there-
fore impose different functional and causal relations) with certain probabilities
and still be able to make inferences on the underlying model parameters and
quantities in the system. I have presented an algorithm in [2] that tries to cope
with these requirements (unlike previous attempts that infer causality from fully
specified systems).

I have done some work on how interpreting models in terms of active phe-
nomena rather than in terms of model parameters can be exploited towards ex-
planation generation [1]. My future work would be directed towards developing
inference algorithms over the representation structures described above.
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Together, we form a working group which is interested in Constraint satisfaction
problems. More precisely, at the present time, we focus on two topics:

– Fuzzy Constraint Hierarchies
– CSP Abstraction.

1 Fuzzy Constraint Hierarchies

Building a constraint hierarchy consists in expressing preferences between con-
straints. Introducing fuzziness is important since it enables to soften the rigid
structure of classical constraint hierarchies. On the one hand, we have defined a
model of fuzzy hierarchies and a declarative method to build such hierarchies.
On the other hand, we have studied a real-world application: the determination
of the profile of urban drainage networks.

2 CSP Abstraction

For two years, we have worked about CSP abstraction. We have defined a frame-
work which is sufficiently general to embrace previous works and to envision new
forms of abstraction, and sufficiently precise to decide without any ambiguity the
correctness of a given abstraction. We have implemented a prototype in order
to study different forms of abstraction with respect to academic and real-world
applications. We are currently in a test period.

3 Recent Publications

1. Blanpain O., Boussemart F., Lecoutre C., Merchez S. Genetic algorithms to
determine the profile of urban drainage networks from incomplete data. In
proceedings of the 3rd International Conference on Hydroinformatics (Hy-
droinformatics98), pages 857-864, Copenhagen, Denmark, August 1998.
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2. Boussemart F., Lecoutre C., Merchez S., Blanpain O. Détermination du
profil de réseaux d’assainissement: Une méthode déclarative basée sur une
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I am a Ph.D. student in the Computer Science Department at Stanford Uni-
versity. My main research interests include query reformulation in the database
domain. In particular, I work on the problems of how to do query planning and
reformulation when relations have limited access patterns [7,9]. That is, the bind-
ing patterns of the relations require values to be specified for certain attributes
in order to retrieve data from a relation. Most of my work is based on the TSIM-
MIS project (http://www-db.stanford.edu/tsimmis/), a data-integration project
[2,10,11] at Stanford.

The following are some query-reformulation problems that I have solved (with
other database researchers at Stanford):

1. How to optimize queries on relations with binding restrictions [6,13]. Since
relations require values of certain attributes to return data, we cannot answer
a query in the traditional way of answering queries. We prove that under the
cost model that counts the number of source accesses, the problem of finding
the optimal plan is NP-complete. We also give some heuristics for finding
good plans and prove their bound.

2. How to compute the capabilities of mediators on relations with limited ca-
pabilities [12]. We consider other complicated relation capabilities besides
binding restrictions.

3. How to do query reformulation to compute as many answers to a query as
possible in the presence of binding restrictions [5]. We show that a query
can be answered by borrowing bindings from sources not mentioned in the
query. We also develop an algorithm for finding all the relations that need
to accessed to answer a query.

4. How to test whether by query reformulation, it is possible to compute the
complete to a query on relations with binding restrictions [3]. The complete
answer to a query is the answer to the query that we could compute if we
could retrieve all the tuples from the relations. Since we cannot retrieve
all the tuples from a relation due to its binding restrictions, we need to
do reasoning about whether the answer computed by a plan is really the
complete answer.

5. How to test query containment in the presence of binding restrictions [4].
We show that the containment is decidable using the results of monadic
programs [1], although containment of datalog programs in general is not
decidable [8].
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Currently I am working on the problem of how a mediator accesses sources to
keep its cached data as fresh as possible, while minimizing the number of source
accesses. It is an instance of a reformulation problem.
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1 Research Summary

Our research area is knowledge-based automatic programming, based on reuse
and specialization of generic algorithms, partial evaluation, and algebraic ma-
nipulation.

We have produced systems that are available as on-line demonstrations at
the web address shown above:

– An Automatic Programming Server accepts a description of the user’s data
structure; it then assists the user to make a view of the user’s data as an ab-
stract type known to the system. Given the view, the system will synthesize
desired programs in the desired language (Lisp, C, C++, Java, or Pascal)
and deliver the code for the programs to the user as a web page.

– A system called VIP [2] generates a scientific program from a diagram show-
ing input and output variables, mathematical and physical principles, and
relations among them.

The hypotheses underlying this work include:

– Programs written by humans are constructed mainly from versions of well-
known algorithms. Much of CS education is aimed at teaching these algo-
rithms to students.

– The goal of automatic programming research should be to allow automatic
generation of working programs from minimal specifications (the kind of
specification a skilled programmer would give to a colleague).

– Since a minimal specification necessarily omits details, inference is required
to fill in the details.

– Reuse of programming knowledge by specialization of generic algorithms can
achieve the automatic programming goal.

Our systems are based on the GLISP language [1]. GLISP is a Lisp-based
language with abstract data types; it performs partial evaluation and type in-
ference where possible, and is recursive at compile time. Views [3] are types that
make a concrete (application) type appear to implement an abstract type, by
computing the variables the abstract type expects to see from what the con-
crete type has. Views are like wrapper objects in OOP, but they are virtual and
when used properly are eliminated by the compiler and have little or no runtime
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cost. By specializing a generic algorithm through views, an application version
is obtained that performs the algorithm directly on the application data.

Views can be complex and can involve considerable code. We have devel-
oped systems that make it easy to construct both data structure views [6] and
mathematical views [5], including units of measurement [4].

We believe that there should be only a single, abstract version of an algorithm
that can serve for all uses through specialization. We have been able to generate
widely different programs by specialization of a single generic procedure.

We have demonstrated that program components can be generated by spe-
cialization of generic algorithms. Our current research is aimed at generating
whole application programs. We find that numerous abstractions are used in an
application program and that these abstractions interact strongly and parame-
terize each other.
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